An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account o...An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment.展开更多
Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain pren...Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain prenyltransferases (SC-PTs), together with terpene synthases (TPSs), play critical roles in determining terpenoid diversity. SC-PTs biosynthesize prenyl pyrophosphates with different chain lengths, and these compounds are the direct precursors of terpenoids. Arabidopsis thaliana possesses a subgroup of SC-PTs whose functions are not clearly known. In this study, we focus on 10 geranylgeranyl pyro- phosphate synthase-like [GGPPSL] proteins, which are commonly thought to produce GGPP [C20]. We found that a subset of members of the Arabidopsis GGPPSL gene family have undergone neo- functionalization: GGPPSL6, 7, 9, and 10 mainly have geranylfarnesyl pyrophosphate synthase activity (C25; renamed AtGFPPS1, 2, 3, and 4), and GGPPSL8 produces even longer chain prenyl pyrophosphate (〉C30; renamed polyprenyl pyrophosphate synthase 2, AtPPPS2). By solving the crystal structures of AtGFPPS2, AtPPPS2, and AtGGPPS11, we reveal the product chain-length determination mechanism of SC-PTs and interpret it as a "three floors" model. Using this model, we identified a novel GFPPS clade distributed in Brassicaceae plants and found that the GFPPS gene typically occurs in tandem with a gene encoding a TPS, forming a GFPPS-TPS gene cluster.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51305033the Ministry of National Defense of China under Grant No 9140C340506
文摘An analytical simulation based on a new model incorporating surface interaction is conducted to study the slip phenomenon in the Couette flow at different scales. The velocity profile is calculated by taking account of the micro-force between molecules and macro-force from the viscous shearing effect, as they contribute to the achieve- ment of the slip length. The calculated results are compared with those obtained from the molecular dynamics simulation, showing an excellent agreement. Further, the effect of the shear rate on the slip is investigated. The results can well predict the fluid flow behaviors on a solid substrate, but has to be proved by experiment.
文摘Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain prenyltransferases (SC-PTs), together with terpene synthases (TPSs), play critical roles in determining terpenoid diversity. SC-PTs biosynthesize prenyl pyrophosphates with different chain lengths, and these compounds are the direct precursors of terpenoids. Arabidopsis thaliana possesses a subgroup of SC-PTs whose functions are not clearly known. In this study, we focus on 10 geranylgeranyl pyro- phosphate synthase-like [GGPPSL] proteins, which are commonly thought to produce GGPP [C20]. We found that a subset of members of the Arabidopsis GGPPSL gene family have undergone neo- functionalization: GGPPSL6, 7, 9, and 10 mainly have geranylfarnesyl pyrophosphate synthase activity (C25; renamed AtGFPPS1, 2, 3, and 4), and GGPPSL8 produces even longer chain prenyl pyrophosphate (〉C30; renamed polyprenyl pyrophosphate synthase 2, AtPPPS2). By solving the crystal structures of AtGFPPS2, AtPPPS2, and AtGGPPS11, we reveal the product chain-length determination mechanism of SC-PTs and interpret it as a "three floors" model. Using this model, we identified a novel GFPPS clade distributed in Brassicaceae plants and found that the GFPPS gene typically occurs in tandem with a gene encoding a TPS, forming a GFPPS-TPS gene cluster.