The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative r...The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.展开更多
This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on th...This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.展开更多
One assumption underlying the conventional dilatometric analysis based on the lever rule is that the volume of the specimen changes isotropically during phase transformation,which conflicts with the irreversible lengt...One assumption underlying the conventional dilatometric analysis based on the lever rule is that the volume of the specimen changes isotropically during phase transformation,which conflicts with the irreversible length change shown in actual measurements.The contribution of this irreversible effect to the dilation data of pure iron upon heating and cooling was respectively quantified via conversion equations based on lattice parameters.A model considering the elastic strain and creep deformation was established for both the interpretation of the irreversible volume change and the discrepancy between the results measured by a dilatometer and a micrometer.展开更多
基金financial funding of National Natural Science Foundation of China (No.52004307)China National Petroleum Corporation (No.ZLZX2020-02-04)the Science Foundation of China University of Petroleum,Beijing (No.2462018YJRC015)。
文摘The loss of hydrocarbon production caused by the dynamic behavior of the inner boundary and propped fractures under long-term production conditions has been widely reported in recent studies.However,the quantitative relationships for the variations of the inner boundary and propped fractures have not been determined and incorporated in the semi-analytical models for the pressure and rate transient analysis.This work focuses on describing the variations of the inner boundary and propped fractures and capturing the typical characteristics from the pressure transient curves.A generalized semi-analytical model was developed to characterize the dynamic behavior of the inner boundary and propped fractures under long-term production conditions.The pressure-dependent length shrinkage coefficients,which quantify the length changes of the inner zone and propped fractures,are modified and incorporated into this multi-zone semi-analytical model.With simultaneous numerical iterations and numerical inversions in Laplace and real-time space,the transient solutions to pressure and rate behavior are determined in just a few seconds.The dynamic behavior of the inner boundary and propped fractures on transient pressure curves is divided into five periods:fracture bilinear flow(FR1),dynamic PFs flow(FR2),inner-area linear flow(FR3),dynamic inner boundary flow(FR4),and outer-area dominated linear flow(FR5).The early hump during FR2 period and a positive upward shift during FR4period are captured on the log-log pressure transient curves,reflecting the dynamic behavior of the inner boundary and propped fractures during the long-term production period.The transient pressure behavior will exhibit greater positive upward trend and the flow rate will be lower with the shrinkage of the inner boundary.The pressure derivative curve will be upward earlier as the inner boundary shrinks more rapidly.The lower permeability caused by the closure of un-propped fractures in the inner zone results in greater upward in pressure derivative curves.If the permeability loss for the dynamic behavior of the inner boundary caused by the closure of un-propped fractures is neglected,the flow rate will be overestimated in the later production period.
基金Innovation Fund Project of National Commercial Aircraft Manufacturing Engineering Research Center(No.SAM C14-JS-15-048)Natural Science Foundation of Shanghai,China(No.13ZR1400400)the Fundamental Research Funds for the Central Universities,China
文摘This study has developed an efficient method to achieve excellent thermal dimensional stability and desired dimensions of hollow polyester fiber. Firstly,the influence of thermal treatment temperate( 140-180 ℃) on the degree of shrinkage of fiber was investigated. The influence was also analyzed with a 2nd heating to simulate the application situation. It was discovered that the heat treatment at a temperature which was above the application temperature( 2nd heating) would efficiently remove the internal stress in the fiber and improve the thermal dimensional stability.Secondly,the impact of heat treatment temperature on the fiber diameter and the degree of hollowness were studied. The results implied that with a fixed fiber length, higher treatment temperature led to thinner fiber and a lower degree of hollowness.Last but not least,key parameters that could further influence the fiber dimensions were investigated. The results suggested that the fiber diameters and the degree of hollowness could be further controlled by tuning the drawing speed,the spinning meter pump output and cooling status while the spinneret parameters were fixed.
基金Item Sponsored by Key Projects in National Science and Technology Pillar Program of China(2013BAE07B00)National Natural Science Foundation of China(51474142)Program for Professors of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning of China(2012)
文摘One assumption underlying the conventional dilatometric analysis based on the lever rule is that the volume of the specimen changes isotropically during phase transformation,which conflicts with the irreversible length change shown in actual measurements.The contribution of this irreversible effect to the dilation data of pure iron upon heating and cooling was respectively quantified via conversion equations based on lattice parameters.A model considering the elastic strain and creep deformation was established for both the interpretation of the irreversible volume change and the discrepancy between the results measured by a dilatometer and a micrometer.