期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Analysis of sea level changes in the Caspian Sea related to Cosmo-geophysical processes based on satellite and terrestrial data
1
作者 Vladimir Kaftan Boris Komitov Sergey Lebedev 《Geodesy and Geodynamics》 2018年第6期449-455,共7页
Analysis results of the average annual sea levels in the Caspian Sea obtained from ground and satellite observations, corresponding to solar activity characteristics, magnetic field data, and length of day are present... Analysis results of the average annual sea levels in the Caspian Sea obtained from ground and satellite observations, corresponding to solar activity characteristics, magnetic field data, and length of day are presented. Spectra of the indicated processes were investigated and their approximation models were also built. Previously assumed statistical relationships between space-geophysical processes and Caspian Sea level(CSL) changes were confirmed. A close connection was revealed between the low-frequency models of the solar and geomagnetic activity parameters and the CSL changes. Predictions extending into the next decades showed a high probability of an increase in the CSL and a decrease of the compared space-geophysical parameters. 展开更多
关键词 CSL Analysis of sea level changes in the Caspian Sea related to Cosmo-geophysical processes based on satellite and terrestrial data lod SSN
下载PDF
Prediction of length-of-day using extreme learning machine 被引量:5
2
作者 Lei Yu Zhao Danning Cai Hongbing 《Geodesy and Geodynamics》 2015年第2期151-159,共9页
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ... Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple. 展开更多
关键词 length-of-day lod PredictionExtreme learning machine (ELM) Artificial neural networks (ANN) Extreme learning machine (ELM) Earth orientation parameters (EOP)EOP prediction comparison campaign (EOP PCC)Least squares
下载PDF
日长季节振荡的振幅变化与南方涛动现象 被引量:3
3
作者 闫昊明 钟敏 朱耀仲 《测绘学报》 EI CSCD 北大核心 2000年第z1期103-106,共4页
本文提出了小波振幅谱的定义 ,给出了其在频域的表达式及频域周期与 Fourier周期之间的线性关系。通过与谐波分析比较 ,证明了小波振幅谱应用的有效性。应用小波振幅谱研究了日长季节振幅变化与南方涛动之间的关系 ,结果表明日长周年振... 本文提出了小波振幅谱的定义 ,给出了其在频域的表达式及频域周期与 Fourier周期之间的线性关系。通过与谐波分析比较 ,证明了小波振幅谱应用的有效性。应用小波振幅谱研究了日长季节振幅变化与南方涛动之间的关系 ,结果表明日长周年振荡的振幅变化与南方涛动的年际变化呈明显负相关 。 展开更多
关键词 小波振幅谱 日长季节变化 南方涛动(SOI)
下载PDF
顾及最小二乘拟合端点效应的日长变化预报 被引量:4
4
作者 雷雨 蔡宏兵 《天文研究与技术》 CSCD 2016年第4期441-445,共5页
针对日长(Length Of Day,LOD)变化预报中最小二乘(Least Squares,LS)拟合存在端点效应的问题,采用时间序列分析方法对日长变化序列进行端点延拓,形成一个新序列,然后用新序列建立最小二乘模型,最后再结合最小二乘模型和自回归(Autoregre... 针对日长(Length Of Day,LOD)变化预报中最小二乘(Least Squares,LS)拟合存在端点效应的问题,采用时间序列分析方法对日长变化序列进行端点延拓,形成一个新序列,然后用新序列建立最小二乘模型,最后再结合最小二乘模型和自回归(Autoregressive,AR)模型对原始日长变化序列进行预报。实验结果表明,在日长变化序列两端增加统计延拓数据,能有效减小最小二乘拟合序列的端点畸变,从而提高日长变化的预报精度,尤其对中长期预报精度提高明显。 展开更多
关键词 日长变化 预报 最小二乘拟合 端点效应 时间序列分析
下载PDF
利用端部效应改正的LS+AR模型进行日长变化预报 被引量:8
5
作者 刘建 王琪洁 张昊 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2013年第8期916-919,共4页
针对LS+AR模型在日长变化预报过程中存在的端部效应现象,采用时间序列分析方法对日长变化的序列进行外推,形成一个新的序列,用这个新序列求得LS模型的系数,然后再用LS+AR模型对日长变化原始序列进行预报。实验结果表明,利用端部效应改正... 针对LS+AR模型在日长变化预报过程中存在的端部效应现象,采用时间序列分析方法对日长变化的序列进行外推,形成一个新的序列,用这个新序列求得LS模型的系数,然后再用LS+AR模型对日长变化原始序列进行预报。实验结果表明,利用端部效应改正的LS+AR模型与LS+AR模型相比,在日长变化的预报精度上有一定的改善,尤其在跨度为中长期时改善更为明显。 展开更多
关键词 端部效应 日长变化 预报 LS+AR模型
原文传递
地球自转角速度长周期变化对太阳轨道运动特征的一种响应机制
6
作者 滕永富 刘复刚 +1 位作者 罗金明 柏林 《地球物理学进展》 CSCD 北大核心 2019年第5期1794-1801,共8页
地球自转角速度的季节性和年变化的成因已达成基本共识,但更长时间尺度的周期性变化成因尚无定论,它们或归因于太阳活动、日月引潮力、地壳反弹、大气圈波动或行星摄动的影响等.直至目前,地球自转变化的规律和机制还没有完全弄清楚.研... 地球自转角速度的季节性和年变化的成因已达成基本共识,但更长时间尺度的周期性变化成因尚无定论,它们或归因于太阳活动、日月引潮力、地壳反弹、大气圈波动或行星摄动的影响等.直至目前,地球自转变化的规律和机制还没有完全弄清楚.研究发现:根据行星会合指数(K)标定太阳轨道运动特征的方法是可行的.通过对行星会合指数(K)的FFT检测发现太阳轨道运动周期与前人研究的地球自转日长(LOD)变化周期具有极强的相关性.太阳轨道运动在受到行星系统力矩作用的同时,致使近日行星轨道运动受到太阳引力作用的波动影响而产生扰动.受太阳巨大引力作用的牵制,导致地球轨道角动量和太阳轨道角动量的变化具有正相关关系.根据地球轨道角动量和自转角动量之和守恒,进而推断地球自转角速度的变化对太阳轨道运动特征的响应,这在思想方法上是一种突破. 展开更多
关键词 行星会合指数 太阳轨道运动 地球轨道运动 地球自转角速度 角动量守恒 地球自转日长(lod)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部