期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Synthetic aperture-based on-chip microscopy 被引量:13
1
作者 Wei Luo Alon Greenbaum +1 位作者 Yibo Zhang Aydogan Ozcan 《Light(Science & Applications)》 SCIE EI CAS CSCD 2015年第1期438-446,共9页
Wide field-of-view(FOV)and high-resolution imaging requires microscopy modalities to have large space-bandwidth products.Lensfree on-chip microscopy decouples resolution from FOV and can achieve a space-bandwidth prod... Wide field-of-view(FOV)and high-resolution imaging requires microscopy modalities to have large space-bandwidth products.Lensfree on-chip microscopy decouples resolution from FOV and can achieve a space-bandwidth product greater than one billion under unit magnification using state-of-the-art opto-electronic sensor chips and pixel super-resolution techniques.However,using vertical illumination,the effective numerical aperture(NA)that can be achieved with an on-chip microscope is limited by a poor signal-to-noise ratio(SNR)at high spatial frequencies and imaging artifacts that arise as a result of the relatively narrow acceptance angles of the sensor’s pixels.Here,we report,for the first time,a synthetic aperture-based on-chip microscope in which the illumination angle is scanned across the surface of a dome to increase the effective NA of the reconstructed lensfree image to 1.4,achieving e.g.,,250-nm resolution at 700-nm wavelength under unit magnification.This synthetic aperture approach not only represents the largest NA achieved to date using an on-chip microscope but also enables color imaging of connected tissue samples,such as pathology slides,by achieving robust phase recovery without the need for multi-height scanning or any prior information about the sample.To validate the effectiveness of this synthetic aperture-based,partially coherent,holographic on-chip microscope,we have successfully imaged color-stained cancer tissue slides as well as unstained Papanicolaou smears across a very large FOV of 20.5 mm^(2).This compact on-chip microscope based on a synthetic aperture approach could be useful for various applications in medicine,physical sciences and engineering that demand high-resolution wide-field imaging. 展开更多
关键词 computational imaging lensfree microscopy on-chip microscopy synthetic aperture
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部