The potential energy curve of the CD(X2∏) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augme...The potential energy curve of the CD(X2∏) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augmented with diffuse functions, aug-cc-pV5Z. The potential energy curve is fitted to the Murrell-Sorbie function, which is used to determine the spectroscopic parameters. The obtained Do, De, Re, ωe, ωeXe, αe and Be values are 3.4971 eV, 3.6261 eV, 0.11197 nm, 2097.661 cm^-1, 34.6963 cm^-1, 0.2083 cm^-1 and 7.7962 cm^-1, respectively, which conform almost perfectly to the available measurements. With the potential obtained at the UCCSD(T)/aug-cc-pV5Z level of theory, a total of 24 vibrational states have been predicted for the first time when J = 0 by solving the radial Schrodinger equation of nuclear motion. The complete vibrational levels, the classical turning points, the inertial rotation constants and centrifugal distortion constants are reproduced from the CD(X2∏) potential when J = 0, and are in excellent agreement with the available measurements. The total and the various partial-wave cross sections are calculated for the elastic collisions between the ground-state C and D atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. when the two atoms approach each other along the CD(X2∏) potential energy curve. Only one shape resonance is found in the total elastic cross sections, and the resonant energy is 8.36×10^-6 a.u. The results show that the shape of the total elastic cross section is mainly dominated by the s partial wave at very low temperatures. Because of the weak shape resonances coming from higher partial waves, most of them are passed into oblivion by the strong total elastic cross sections.展开更多
Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective co...Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective contribution in a given meteorological situation is lacking. Here we suggest and analyze a hitherto little discussed process. A qualitative picture at the molecular level of the charge separation mechanism of lightning in a thundercloud is proposed. It is based on two key physical/chemical natural phenomena, namely, internal charge separation of the atmospheric impurities/aerosols inside an atmospheric water cluster/droplet/ice particle and the existence of liquid water layers on rimers (graupels and hailstones) forming a layer of dipoles with H<sup>+</sup> pointing out from the air-water interface. Charge separation is achieved through strong collisions among ice particles and water droplets with the rimers in the turbulence of the thundercloud. This work would have significant contribution to cloud electrification and lightning formation.展开更多
For accurate and stable haptic rendering, collision detection for interactive haptic applications has to be done by filling in or covering target objects as tightly as possible with bounding volumes (spheres, axis-al...For accurate and stable haptic rendering, collision detection for interactive haptic applications has to be done by filling in or covering target objects as tightly as possible with bounding volumes (spheres, axis-aligned bounding boxes, oriented bounding boxes, or polytopes). In this paper, we propose a method for creating bounding spheres with respect to the contact levels of details (CLOD), which can fit objects while maintaining the balance between high speed and precision of collision detection. Our method is composed mainly of two parts: bounding sphere formation and two-level collision detection. To specify further, bounding sphere formation can be divided into two steps: creating spheres and clustering spheres. Two-level collision detection has two stages as well: fast detection of spheres and precise detection in spheres. First, bounding spheres are created for initial fast probing to detect collisions of spheres. Once a collision is probed, a more precise detection is executed by examining the distance between a haptie pointer and each mesh inside the colliding boundaries. To achieve this refmed level of detection, a special data structure of a bounding volume needs to be defined to include all mesh information in the sphere. After performing a number of experiments to examine the usefulness and performance of our method, we have concluded that our algorithm is fast and precise enough for haptic simulations. The high speed detection is achieved through the clustering of spheres, while detection precision is realized by voxel-based direct collision detection. Our method retains its originality through the CLOD by distance-based clustering.展开更多
The northeastern Arabian passive margin is being subducted beneath the Zagros and Makran of Iran. A flexural bulge related to the weight of the Makran has migrated at 4 cm/a through the previously uplifted Hajar Mount...The northeastern Arabian passive margin is being subducted beneath the Zagros and Makran of Iran. A flexural bulge related to the weight of the Makran has migrated at 4 cm/a through the previously uplifted Hajar Mountains of Oman as this active convergence and collision between Arabia and Eurasia progresses, adding approximately another 500 meters of relief, and forming a series of uplifted marine terraces, alluvial terraces, and planation surfaces that record the passage of the bulge. We use a combination of field studies, remote sensing and GIS to map and better-understand these terraces, and elucidate how the tectonics of bulge migration, down-to-trench normal faulting, and eustatic sea level changes have interacted to produce the extant geomorphic features on the inner slope of the flexural bulge as it sinks into the foredeep of the Gulf of Oman. We speculate those terraces that were uplifted on the outer slope of the forebulge as it initially migrated through the passive margin (affected by ophiolite obduction in the Cretaceous) 3.75-7.5 Ma ago are now sinking on the inner slope of the forebulge (corresponding to the outer trench slope in the foredeep), and have been partly covered by Quaternary marine terraces related to a Weichselian sea level high stand. Both the Tertiary and Quaternary terraces are cut by faults related to the active collision, confirming that there is a significant risk of moderate earthquakes in the region.展开更多
基金supported by the Program for Science and Technology Innovation Talents in Universities of Henan Province,China (Grant No 2008HASTIT008)the National Natural Science Foundation of China (Grant Nos 60777012,10874064 and 10574039)
文摘The potential energy curve of the CD(X2∏) radical is obtained using the coupled-cluster singles-doublesapproximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set augmented with diffuse functions, aug-cc-pV5Z. The potential energy curve is fitted to the Murrell-Sorbie function, which is used to determine the spectroscopic parameters. The obtained Do, De, Re, ωe, ωeXe, αe and Be values are 3.4971 eV, 3.6261 eV, 0.11197 nm, 2097.661 cm^-1, 34.6963 cm^-1, 0.2083 cm^-1 and 7.7962 cm^-1, respectively, which conform almost perfectly to the available measurements. With the potential obtained at the UCCSD(T)/aug-cc-pV5Z level of theory, a total of 24 vibrational states have been predicted for the first time when J = 0 by solving the radial Schrodinger equation of nuclear motion. The complete vibrational levels, the classical turning points, the inertial rotation constants and centrifugal distortion constants are reproduced from the CD(X2∏) potential when J = 0, and are in excellent agreement with the available measurements. The total and the various partial-wave cross sections are calculated for the elastic collisions between the ground-state C and D atoms at energies from 1.0×10^-11 to 1.0 × 10^-4 a.u. when the two atoms approach each other along the CD(X2∏) potential energy curve. Only one shape resonance is found in the total elastic cross sections, and the resonant energy is 8.36×10^-6 a.u. The results show that the shape of the total elastic cross section is mainly dominated by the s partial wave at very low temperatures. Because of the weak shape resonances coming from higher partial waves, most of them are passed into oblivion by the strong total elastic cross sections.
文摘Cloud electrification is one of the oldest unresolved puzzles in the atmospheric sciences. Though many mechanisms for charge separation in clouds have been proposed, a quantitative understanding of their respective contribution in a given meteorological situation is lacking. Here we suggest and analyze a hitherto little discussed process. A qualitative picture at the molecular level of the charge separation mechanism of lightning in a thundercloud is proposed. It is based on two key physical/chemical natural phenomena, namely, internal charge separation of the atmospheric impurities/aerosols inside an atmospheric water cluster/droplet/ice particle and the existence of liquid water layers on rimers (graupels and hailstones) forming a layer of dipoles with H<sup>+</sup> pointing out from the air-water interface. Charge separation is achieved through strong collisions among ice particles and water droplets with the rimers in the turbulence of the thundercloud. This work would have significant contribution to cloud electrification and lightning formation.
基金supported by Incheon National University Research,Korea(No.20120238)
文摘For accurate and stable haptic rendering, collision detection for interactive haptic applications has to be done by filling in or covering target objects as tightly as possible with bounding volumes (spheres, axis-aligned bounding boxes, oriented bounding boxes, or polytopes). In this paper, we propose a method for creating bounding spheres with respect to the contact levels of details (CLOD), which can fit objects while maintaining the balance between high speed and precision of collision detection. Our method is composed mainly of two parts: bounding sphere formation and two-level collision detection. To specify further, bounding sphere formation can be divided into two steps: creating spheres and clustering spheres. Two-level collision detection has two stages as well: fast detection of spheres and precise detection in spheres. First, bounding spheres are created for initial fast probing to detect collisions of spheres. Once a collision is probed, a more precise detection is executed by examining the distance between a haptie pointer and each mesh inside the colliding boundaries. To achieve this refmed level of detection, a special data structure of a bounding volume needs to be defined to include all mesh information in the sphere. After performing a number of experiments to examine the usefulness and performance of our method, we have concluded that our algorithm is fast and precise enough for haptic simulations. The high speed detection is achieved through the clustering of spheres, while detection precision is realized by voxel-based direct collision detection. Our method retains its originality through the CLOD by distance-based clustering.
基金partially supported by Sultan Qaboos Internal (No.IG/SCI/ETHS/14/02)the National Natural Science Foundation of China (Nos.91014002 and 40821061)+2 种基金Ministry of Education of China (No.B07039)the Academic Innovation Base Plan of China University of Geosciences (Wuhan)the 1000 Talents Program,Central Organization Committee,China
文摘The northeastern Arabian passive margin is being subducted beneath the Zagros and Makran of Iran. A flexural bulge related to the weight of the Makran has migrated at 4 cm/a through the previously uplifted Hajar Mountains of Oman as this active convergence and collision between Arabia and Eurasia progresses, adding approximately another 500 meters of relief, and forming a series of uplifted marine terraces, alluvial terraces, and planation surfaces that record the passage of the bulge. We use a combination of field studies, remote sensing and GIS to map and better-understand these terraces, and elucidate how the tectonics of bulge migration, down-to-trench normal faulting, and eustatic sea level changes have interacted to produce the extant geomorphic features on the inner slope of the flexural bulge as it sinks into the foredeep of the Gulf of Oman. We speculate those terraces that were uplifted on the outer slope of the forebulge as it initially migrated through the passive margin (affected by ophiolite obduction in the Cretaceous) 3.75-7.5 Ma ago are now sinking on the inner slope of the forebulge (corresponding to the outer trench slope in the foredeep), and have been partly covered by Quaternary marine terraces related to a Weichselian sea level high stand. Both the Tertiary and Quaternary terraces are cut by faults related to the active collision, confirming that there is a significant risk of moderate earthquakes in the region.