In handing information regarding various aspects of uncertainty, non-classical-mathematics (fuzzy mathematics or great extension and development of classical mathematics) is considered to be a more powerful technique ...In handing information regarding various aspects of uncertainty, non-classical-mathematics (fuzzy mathematics or great extension and development of classical mathematics) is considered to be a more powerful technique than classical mathematics. The non-classical mathematics, therefore, has now days become a useful tool in applications mathematics and computer science. The purpose of this paper is to apply the concept of the fuzzy sets to some algebraic structures such as an ideal, upper semilattice, lower semilattice, lattice and sub-algebra and gives some properties of these algebraic structures by using the concept of fuzzy sets. Finally, related properties are investigated in fuzzy BCK-algebras.展开更多
文摘In handing information regarding various aspects of uncertainty, non-classical-mathematics (fuzzy mathematics or great extension and development of classical mathematics) is considered to be a more powerful technique than classical mathematics. The non-classical mathematics, therefore, has now days become a useful tool in applications mathematics and computer science. The purpose of this paper is to apply the concept of the fuzzy sets to some algebraic structures such as an ideal, upper semilattice, lower semilattice, lattice and sub-algebra and gives some properties of these algebraic structures by using the concept of fuzzy sets. Finally, related properties are investigated in fuzzy BCK-algebras.