期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Modeling and TOPSIS-GRA Algorithm for Autonomous Driving Decision-Making Under 5G-V2X Infrastructure
1
作者 Shijun Fu Hongji Fu 《Computers, Materials & Continua》 SCIE EI 2023年第4期1051-1071,共21页
This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous drivi... This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure. 展开更多
关键词 5G-V2X cerebrum-like autonomous driving driving behavior decision-making hierarchical finite state machines TOPSIS-GRA algorithm
下载PDF
DQL-Based Intelligent Scheduling Algorithm for Automatic Driving in Massive MIMO V2I Scenarios 被引量:2
2
作者 Yong Liao Zisong Yin +1 位作者 Zhijing Yang Xuanfan Shen 《China Communications》 SCIE CSCD 2023年第3期18-26,共9页
Connected and autonomous vehicle(CAV)vehicle to infrastructure(V2I)scenarios have more stringent requirements on the communication rate,delay,and reliability of the Internet of vehicles(Io V).New radio vehicle to ever... Connected and autonomous vehicle(CAV)vehicle to infrastructure(V2I)scenarios have more stringent requirements on the communication rate,delay,and reliability of the Internet of vehicles(Io V).New radio vehicle to everything(NR-V2X)adopts link adaptation(LA)to improve the efficiency and reliability of road safety information transmission.In order to solve the problem that the existing LA scheduling algorithms cannot adapt to the Doppler shift and complex fast time-varying channel in V2I scenario,resulting in low reliability of information transmission,this paper proposes a deep Q-learning(DQL)-based massive multiple-input multiple-output(MIMO)LA scheduling algorithm for autonomous driving V2I scenario.The algorithm combines deep neural network(DNN)with Q-learning(QL)algorithm,which is used for joint scheduling of modulation and coding scheme(MCS)and space division multiplexing(SDM).The system simulation results show that the algorithm proposed in this paper can fully adapt to the different channel environment in the V2I scenario,and select the optimal MCS and SDM for the transmission of road safety information,thereby the accuracy of road safety information transmission is improved,collision accidents can be avoided,and bring a good autonomous driving experience. 展开更多
关键词 NR autonomous driving V2I link adap-tation massive MIMO deep Q-learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部