The Global Geopotential Models (GGMs) of GOCE (Gravity Recovery and steady- state Ocean Circulation Explorer) differ globally as well as regionally in their accuracy and resolution based on the maximum degree and orde...The Global Geopotential Models (GGMs) of GOCE (Gravity Recovery and steady- state Ocean Circulation Explorer) differ globally as well as regionally in their accuracy and resolution based on the maximum degree and order (d/o) of the fully normalized spherical harmonic (SH) coefficients, which express each GGM. The main idea of this study is to compare the free-air gravity anomalies and quasi geoid heights determined from several recent GOCE-based GGMs with the corresponding ones from the Earth Gravitational Model 2008 (EGM2008) over Egypt on the one hand and with ground-based measurements on the other hand. The results regarding to the comparison of GOCE-based GGMs with terrestrial gravity and GPS/levelling data provide better improvement with respect to EGM2008. The 4th release GOCE-based GGM developed with the use of space-wise solution strategy (SPW_R4) approximates the gravity field well over the Egyptian region. The SPW_R4 model is accordingly suggested as a reference model for recovering the long wavelength (up to SH d/o 200) components of quasi geoid heights when modelling the gravimetric quasi-geoid over the Egypt. Finally, three types of transformation models: Four-, Five- and Seven-parameter transformations have been applied to reduce the data biases and to provide a better fitting of quasi geoid heights obtained from the studied GOCE-based GGMs to those from GPS/levelling data. These models reveal that the standard deviation of vertical datum over Egypt is at the level of about 32 cm.展开更多
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery...As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.展开更多
Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is s...Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents(the platform,the seller on it and consumers)under privacy data sharing.Equilibrium decisions show that after sharing consumers'privacy data once,the platform can collect more privacy data from consumers.Meanwhile,privacy data sharing pushes the seller to reduce the product price.Moreover,the platform will increase the transaction fee if the privacy data sharing value is high.It is also indicated that privacy data sharing always benefits consumers and the seller.However,the platform's profit decreases if the privacy data sharing value is low and the privacy data sharing level is high.Finally,an extended model considering an incomplete information game among the agents is discussed.The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing.Factors including the seller's possibility to buy privacy data,the privacy data sharing value and privacy data sharing level affect the two agents'payoffs.If the platform wishes to benefit from privacy data sharing,it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.展开更多
According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of ...According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades.In another aspect,the satellite altimetry observations spanning recent two decades demonstrate the sea level rise(SLR) rate 3.2 ± 0.4 mm/a,of which1.8 ± 0.5 mm/a is contributed by the ice melting over land.This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century,which coincides with the estimate provided by previous authors.The SLR observation by altimetry is not balanced by the ice melting and thermal expansion,which is an open problem before this study.However,in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a.Combining the expansion rates of land part and oceanic part,we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades.If the Earth expands at this rate,then the altimetry-observed SLR can be well explained.展开更多
The in-orbit commissioning of ZY-1 02C satellite is proceeding smoothly. According to the relevant experts in this field, the imagery quality of the satellite has reached or nearly reached the level of international s...The in-orbit commissioning of ZY-1 02C satellite is proceeding smoothly. According to the relevant experts in this field, the imagery quality of the satellite has reached or nearly reached the level of international satellites of the same kind. ZY-1 02C satellite and ZY-3 satellite were successfully launched on December 22, 2011 and January 9, 2012 respectively. China Centre for Resources Satellite Data andApplication (CRSDA) was responsible for the building of a ground展开更多
Vertical deformation in Tianjin area during 1992 -2008 was calculated from leveling data. The effect of large surface subsidence caused by extensive groundwater pumping was removed by fitting the data along each surve...Vertical deformation in Tianjin area during 1992 -2008 was calculated from leveling data. The effect of large surface subsidence caused by extensive groundwater pumping was removed by fitting the data along each survey line with a polynomial function. The results are fitted with crustal blocks individually in this area. Vertical deformation rates are mapped, vertical rates of the main fault zones were calculated, and the activities of the blocks and fault zones were investigated. The observed vertical deformation shows that some of the blocks tilted and some blocks rose or subsided as a whole. The vertical rates at fault zones in the area vary within the range of 0. 13-0. 48 mm/a,with an average value of 0.29 mm/a.展开更多
The load of the continental ice caps of the Ice Ages deformed the bedrock, and when the ice melted in postglacial time, land rose. This process is known as glacial isostasy. The deformations are compensated either reg...The load of the continental ice caps of the Ice Ages deformed the bedrock, and when the ice melted in postglacial time, land rose. This process is known as glacial isostasy. The deformations are compensated either regionally or globally. Fennoscandian data indicate a regional compensation. Global sea level data support a regional, not global, compensation. Subtracting GIA corrections from satellite altimetry records brings—for the first time—different sea level indications into harmony of a present mean global sea level rise of 0.0 to 1.0 mm/yr.展开更多
It can be observed from looking backward that processor architecture is improved through spirally shifting from simple to complex and from complex to simple. Nowadays we are facing another shifting from complex to sim...It can be observed from looking backward that processor architecture is improved through spirally shifting from simple to complex and from complex to simple. Nowadays we are facing another shifting from complex to simple, and new innovative architecture will emerge to utilize the continuously increasing transistor budgets. The growing importance of wire delays, changing workloads, power consumption, and design/verification complexity will drive the forthcoming era of Chip Multiprocessors (CMPs). Furthermore, typical CMP projects both from industries and from academics are investigated. Through going into depths for some primary theoretical and implementation problems of CMPs, the great challenges and opportunities to future CMPs are presented and discussed. Finally, the Godson series microprocessors designed in China are introduced.展开更多
文摘The Global Geopotential Models (GGMs) of GOCE (Gravity Recovery and steady- state Ocean Circulation Explorer) differ globally as well as regionally in their accuracy and resolution based on the maximum degree and order (d/o) of the fully normalized spherical harmonic (SH) coefficients, which express each GGM. The main idea of this study is to compare the free-air gravity anomalies and quasi geoid heights determined from several recent GOCE-based GGMs with the corresponding ones from the Earth Gravitational Model 2008 (EGM2008) over Egypt on the one hand and with ground-based measurements on the other hand. The results regarding to the comparison of GOCE-based GGMs with terrestrial gravity and GPS/levelling data provide better improvement with respect to EGM2008. The 4th release GOCE-based GGM developed with the use of space-wise solution strategy (SPW_R4) approximates the gravity field well over the Egyptian region. The SPW_R4 model is accordingly suggested as a reference model for recovering the long wavelength (up to SH d/o 200) components of quasi geoid heights when modelling the gravimetric quasi-geoid over the Egypt. Finally, three types of transformation models: Four-, Five- and Seven-parameter transformations have been applied to reduce the data biases and to provide a better fitting of quasi geoid heights obtained from the studied GOCE-based GGMs to those from GPS/levelling data. These models reveal that the standard deviation of vertical datum over Egypt is at the level of about 32 cm.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2007AA04Z433)Hunan Provincial Natural Science Foundation of China (Grant No. 09JJ8005)Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology,China (Grant No. 10Me002)
文摘As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement.
基金The National Social Science Foundation of China(No.17BGL196)。
文摘Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents(the platform,the seller on it and consumers)under privacy data sharing.Equilibrium decisions show that after sharing consumers'privacy data once,the platform can collect more privacy data from consumers.Meanwhile,privacy data sharing pushes the seller to reduce the product price.Moreover,the platform will increase the transaction fee if the privacy data sharing value is high.It is also indicated that privacy data sharing always benefits consumers and the seller.However,the platform's profit decreases if the privacy data sharing value is low and the privacy data sharing level is high.Finally,an extended model considering an incomplete information game among the agents is discussed.The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing.Factors including the seller's possibility to buy privacy data,the privacy data sharing value and privacy data sharing level affect the two agents'payoffs.If the platform wishes to benefit from privacy data sharing,it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.
基金supported by National 973 Project China(2013CB733305,2013CB733301)National Natural Science Foundation of China(41174011,41429401,41210006,41128003,41021061)
文摘According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008,our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades.In another aspect,the satellite altimetry observations spanning recent two decades demonstrate the sea level rise(SLR) rate 3.2 ± 0.4 mm/a,of which1.8 ± 0.5 mm/a is contributed by the ice melting over land.This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century,which coincides with the estimate provided by previous authors.The SLR observation by altimetry is not balanced by the ice melting and thermal expansion,which is an open problem before this study.However,in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a.Combining the expansion rates of land part and oceanic part,we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades.If the Earth expands at this rate,then the altimetry-observed SLR can be well explained.
文摘The in-orbit commissioning of ZY-1 02C satellite is proceeding smoothly. According to the relevant experts in this field, the imagery quality of the satellite has reached or nearly reached the level of international satellites of the same kind. ZY-1 02C satellite and ZY-3 satellite were successfully launched on December 22, 2011 and January 9, 2012 respectively. China Centre for Resources Satellite Data andApplication (CRSDA) was responsible for the building of a ground
文摘Vertical deformation in Tianjin area during 1992 -2008 was calculated from leveling data. The effect of large surface subsidence caused by extensive groundwater pumping was removed by fitting the data along each survey line with a polynomial function. The results are fitted with crustal blocks individually in this area. Vertical deformation rates are mapped, vertical rates of the main fault zones were calculated, and the activities of the blocks and fault zones were investigated. The observed vertical deformation shows that some of the blocks tilted and some blocks rose or subsided as a whole. The vertical rates at fault zones in the area vary within the range of 0. 13-0. 48 mm/a,with an average value of 0.29 mm/a.
文摘The load of the continental ice caps of the Ice Ages deformed the bedrock, and when the ice melted in postglacial time, land rose. This process is known as glacial isostasy. The deformations are compensated either regionally or globally. Fennoscandian data indicate a regional compensation. Global sea level data support a regional, not global, compensation. Subtracting GIA corrections from satellite altimetry records brings—for the first time—different sea level indications into harmony of a present mean global sea level rise of 0.0 to 1.0 mm/yr.
基金Supported by the National Natural Science Foundation of China for Distinguished Young Scholar under Grant No. 60325205 the National High Technology Development 863 Program of China under Grants No. 2002AA110010, No. 2005AA110010 No. 2005AA119020, and the National Grand Fundamental Research 973 Program of China under Grant No. 2005CB321600.
文摘It can be observed from looking backward that processor architecture is improved through spirally shifting from simple to complex and from complex to simple. Nowadays we are facing another shifting from complex to simple, and new innovative architecture will emerge to utilize the continuously increasing transistor budgets. The growing importance of wire delays, changing workloads, power consumption, and design/verification complexity will drive the forthcoming era of Chip Multiprocessors (CMPs). Furthermore, typical CMP projects both from industries and from academics are investigated. Through going into depths for some primary theoretical and implementation problems of CMPs, the great challenges and opportunities to future CMPs are presented and discussed. Finally, the Godson series microprocessors designed in China are introduced.