The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip fa...The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations. The issue of paucity of boundary conditions is addressed and an effective numerical scheme is adopted to solve the obtained differential equations even without augmenting any extra boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields. It is interesting to find that the slip increases the momentum and thermal boundary layer thickness. As the slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid. The presence of a magnetic field has also substantial effects on velocity and temperature fields.展开更多
In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached condition...In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.展开更多
本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一...本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。展开更多
This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance....This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance. A state feedback matrix is developed using Lyapunov’s second method. Moreover, the relationships between the state feedback matrix and the cost function are obtained, and a formula to solve the weighting matrices is suggest- ed. The developed method is applied successfully to design the horizontal loops in the inertial navigation system.展开更多
文摘The flow and heat transfer of an electrically conducting non-Newtonian second grade fluid due to a radially stretching surface with partial slip is considered. The partial slip is controlled by a dimensionless slip factor, which varies between zero (total adhesion) and infinity (full slip). Suitable similarity transformations are used to reduce the resulting highly nonlinear partial differential equations into ordinary differential equations. The issue of paucity of boundary conditions is addressed and an effective numerical scheme is adopted to solve the obtained differential equations even without augmenting any extra boundary conditions. The important findings in this communication are the combined effects of the partial slip, magnetic interaction parameter and the second grade fluid parameter on the velocity and temperature fields. It is interesting to find that the slip increases the momentum and thermal boundary layer thickness. As the slip increases in magnitude, permitting more fluid to slip past the sheet, the skin friction coefficient decreases in magnitude and approaches zero for higher values of the slip parameter, i.e., the fluid behaves as though it were inviscid. The presence of a magnetic field has also substantial effects on velocity and temperature fields.
文摘In this paper, Goursat’s problems for: linear and nonlinear hyperbolic equations of second-order, systems of nonlinear hyperbolic equations and fourth-order linear hyperbolic equations in which the attached conditions are given on the characteristics curves are transformed in such a manner that the Adomian decomposition method (ADM) can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate this approach is indeed practical and efficient.
文摘本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。
基金Project supported by the Hong Kong Polytechnic University(A/C 350/555)
文摘This paper presents a new solution to the inverse problem of linear optimal regulators to minimize a cost function and meet the requirements of relative stability in the presence of a constant but unknown disturbance. A state feedback matrix is developed using Lyapunov’s second method. Moreover, the relationships between the state feedback matrix and the cost function are obtained, and a formula to solve the weighting matrices is suggest- ed. The developed method is applied successfully to design the horizontal loops in the inertial navigation system.