Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
基于卷积神经网络的YOLOv3(You Only Look Once v3)目标检测算法设计了一种基于目标检测及模糊匹配机制的非标船牌识别软件系统,并通过在船舶视频监控系统中的实际应用,验证了该船牌识别系统的可行性,提高了船舶铭牌识别的可靠性。YOLOv...基于卷积神经网络的YOLOv3(You Only Look Once v3)目标检测算法设计了一种基于目标检测及模糊匹配机制的非标船牌识别软件系统,并通过在船舶视频监控系统中的实际应用,验证了该船牌识别系统的可行性,提高了船舶铭牌识别的可靠性。YOLOv3目标检测算法将检测简化为一个回归问题,通过仅仅一个网络,就能从图像中得到物体的类别与概率,确保了识别的准确性与实时性。针对船舶非标铭牌锈蚀、遮挡等问题,创新点是在基于YOLOv3的非标船牌识别系统的实现框架之上,设计船名有限中文库与模糊匹配机制,有效解决了船牌识别准确率过低的问题,取得了较好的识别效果。展开更多
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘基于卷积神经网络的YOLOv3(You Only Look Once v3)目标检测算法设计了一种基于目标检测及模糊匹配机制的非标船牌识别软件系统,并通过在船舶视频监控系统中的实际应用,验证了该船牌识别系统的可行性,提高了船舶铭牌识别的可靠性。YOLOv3目标检测算法将检测简化为一个回归问题,通过仅仅一个网络,就能从图像中得到物体的类别与概率,确保了识别的准确性与实时性。针对船舶非标铭牌锈蚀、遮挡等问题,创新点是在基于YOLOv3的非标船牌识别系统的实现框架之上,设计船名有限中文库与模糊匹配机制,有效解决了船牌识别准确率过低的问题,取得了较好的识别效果。