Through analysis of cloud computing and characteristics, the paper described cloud computing infrastructure architecture. Mainly discusses cloud computing advantages in the use of the library and the use should pay at...Through analysis of cloud computing and characteristics, the paper described cloud computing infrastructure architecture. Mainly discusses cloud computing advantages in the use of the library and the use should pay attention to the problem, on this basis, we propose a cloud- based library information platform construction model to analyze the basic architecture of cloud computing, cloud-depth study calculated at the library information platform and database access patterns operating mode, and cloud computing future development and application prospects.展开更多
The paper is based on literature search,introducing and analyzing the book publishing situation of modern Peking University Library from the perspective of the publisher being Peking University Library and its predece...The paper is based on literature search,introducing and analyzing the book publishing situation of modern Peking University Library from the perspective of the publisher being Peking University Library and its predecessor.It is pointed out that the majority of the book printing methods published by the modern Peking University Library are lead printing,and among the types of Chinese library classification,catalogue of library collections is the most common.展开更多
Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technol...Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technology is not confined to the virtual domain but rather has a tangible influence on our daily lives and the surrounding environment,the extensive integration and potential of digital technologies offer a distinctive prospect to fundamentally transform our shared comprehension of architecture.Digital technologies are revolutionizing design practices,manufacturing processes,and our engagement with and understanding of the built environment,by fostering the development of novel models that promote equity and inclusivity.The application of“digital technologies”can function as a methodology for examining and expressing the possible paths of emerging digital technologies.Extrapolate the expected impact of digital technologies on the design,development,and occupancy of the environment to achieve a more sustainable future in the long run.This paper will examine the potential connections and origins of digital technology concerning modularity,as well as the implications of modularity on forthcoming architectural developments in customization.展开更多
Many organizations have now adopted Service Oriented Architecture (SOA) as an architectural style to help them with architecture, design and implementation of their core services and systems. Most of these organizat...Many organizations have now adopted Service Oriented Architecture (SOA) as an architectural style to help them with architecture, design and implementation of their core services and systems. Most of these organizations are challenged in integrating SOA style with their overall Enterprise Architecture work. This framework links an SOA style with the Enterprise Architecture (EA) methodologies to help organizations organize their SOA effort as a key part of their Enterprise Architecture. The case study demonstrates the implementation of architecture goal with organization vision in service oriented organizational structure using services that align Business with Technology. The framework is validated and has reserved the privileges of SOA and EA.展开更多
Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmenta...Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.展开更多
Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human ...Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.展开更多
Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and p...Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.展开更多
Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper anal...Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics.展开更多
Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures...Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.展开更多
A multi-group cross-section library is fundamental for deterministic lattice physics calculations.Most existing multi-group cross-section libraries are customized for particular computer codes,as well as for particula...A multi-group cross-section library is fundamental for deterministic lattice physics calculations.Most existing multi-group cross-section libraries are customized for particular computer codes,as well as for particular types of nuclear reactors.This paper presents an HDF5-format multi-group cross-section library named XPZLIB.XPZLIB was produced using a selfdeveloped XPZR module integrated into the NJOY2016 code,and an in-house PyNjoy2022 system was developed for autoprocessing.XPZLIB contains detailed data content and well-organized data structures that are user-and developer-friendly.Three typical XPZLIBs with different numbers of energy groups,nuclides,and depletion reaction types were released via the Tsinghua cloud website.Furthermore,the applicability of the released XPZLIBs was investigated using HTGR and PWR lattice calculations,which can provide guidance for applying XPZLIB under different scenarios.展开更多
The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely de...The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure.展开更多
Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransducti...Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransduction of these hormones and the crosstalk between their signals on the regulation of rice plantarchitecture and grain shape.展开更多
Cotton architecture is determined by the differentiation fate transition of axillary meristem(AM),and influences cotton yield and the efficiency of mechanized harvesting.We observed that the initiation of flowering pr...Cotton architecture is determined by the differentiation fate transition of axillary meristem(AM),and influences cotton yield and the efficiency of mechanized harvesting.We observed that the initiation of flowering primordium was earlier in early-maturing than that in late-maturing cultivars during the differentiation and development of AM.The RNA-Seq and expression level analyses showed that genes FLAVIN BINDING,KELCH REPEAT,F-BOX1(GhFKF1),and GIGANTEA(GhGI)were in response to circadian rhythms,and involved in the regulation of cotton flowering.The gene structure,predicted protein structure,and motif content analyses showed that in Arabidopsis,cotton,rapseed,and soybean,proteins GhFKF1 and GhGI were functionally conserved and share evolutionary origins.Compared to the wild type,in GhFKF1 mutants that were created by the CRISPR/Cas9 system,the initiation of branch primordium was inhibited.Conversely,the knocking out of GhGI increased the number of AM differentiating into flower primordium,and there were much more lateral branch differentiation and development.Besides,we investigated that proteins GhFKF1 and GhGI can interact with each other.These results suggest that GhFKF1 and GhGI are key regulators of cotton architecture development,and may collaborate to regulate the differentiation fate transition of AM,ultimately influencing plant architecture.We describe a strategy for using the CRISPR/Cas9 system to increase cotton adaptation and productivity by optimizing plant architecture.展开更多
Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANIC...Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.展开更多
MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite i...MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.展开更多
通过对国内外Living Library的考察,结合Web2.0和社会性网络SNS的发展,提出了一个基于SNS的Living Library虚拟社区模型:Virtual Living Library(简称VLL),并就VLL的概念模型的构建、实践和评价等方面进行了论述,讨论了VLL的建设可能性...通过对国内外Living Library的考察,结合Web2.0和社会性网络SNS的发展,提出了一个基于SNS的Living Library虚拟社区模型:Virtual Living Library(简称VLL),并就VLL的概念模型的构建、实践和评价等方面进行了论述,讨论了VLL的建设可能性和发展前景。展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,w...Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.展开更多
We develop universal quantum computing models that form a family of quantum von Neumann architectures,with modular units of memory,control,CPU,and internet,besides input and output.This family contains three generatio...We develop universal quantum computing models that form a family of quantum von Neumann architectures,with modular units of memory,control,CPU,and internet,besides input and output.This family contains three generations characterized by dynamical quantum resource theory,and it also circumvents no-go theorems on quantum programming and control.Besides universality,such a family satisfies other desirable engineering requirements on system and algorithm design,such as modularity and programmability,hence serves as a unique approach to building universal quantum computers.展开更多
文摘Through analysis of cloud computing and characteristics, the paper described cloud computing infrastructure architecture. Mainly discusses cloud computing advantages in the use of the library and the use should pay attention to the problem, on this basis, we propose a cloud- based library information platform construction model to analyze the basic architecture of cloud computing, cloud-depth study calculated at the library information platform and database access patterns operating mode, and cloud computing future development and application prospects.
基金Humanities and Social Sciences Planning Fund Project of the Ministry of Education of P.R.China,titled“Research on the Books Publishing of Modern Chinese Libraries from the Perspective of Generalized Technology”(Project No.19YJA870014).
文摘The paper is based on literature search,introducing and analyzing the book publishing situation of modern Peking University Library from the perspective of the publisher being Peking University Library and its predecessor.It is pointed out that the majority of the book printing methods published by the modern Peking University Library are lead printing,and among the types of Chinese library classification,catalogue of library collections is the most common.
文摘Understanding digital technology requires a shift in mindset that takes into account the broader implications of design,social dynamics,environmental factors,and cultural influences.Acknowledging the fact that technology is not confined to the virtual domain but rather has a tangible influence on our daily lives and the surrounding environment,the extensive integration and potential of digital technologies offer a distinctive prospect to fundamentally transform our shared comprehension of architecture.Digital technologies are revolutionizing design practices,manufacturing processes,and our engagement with and understanding of the built environment,by fostering the development of novel models that promote equity and inclusivity.The application of“digital technologies”can function as a methodology for examining and expressing the possible paths of emerging digital technologies.Extrapolate the expected impact of digital technologies on the design,development,and occupancy of the environment to achieve a more sustainable future in the long run.This paper will examine the potential connections and origins of digital technology concerning modularity,as well as the implications of modularity on forthcoming architectural developments in customization.
文摘Many organizations have now adopted Service Oriented Architecture (SOA) as an architectural style to help them with architecture, design and implementation of their core services and systems. Most of these organizations are challenged in integrating SOA style with their overall Enterprise Architecture work. This framework links an SOA style with the Enterprise Architecture (EA) methodologies to help organizations organize their SOA effort as a key part of their Enterprise Architecture. The case study demonstrates the implementation of architecture goal with organization vision in service oriented organizational structure using services that align Business with Technology. The framework is validated and has reserved the privileges of SOA and EA.
基金supported by the Key Research and Development Program of Zhejiang(2024SSYS0099)the National Key Research and Development Program of China(2022YFD1200203)Key Research and Development Program of Hebei province(22326305D).
文摘Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grant No.61976242in part by the Natural Science Fund of Hebei Province for Distinguished Young Scholars under Grant No.F2021202010+2 种基金in part by the Fundamental Scientific Research Funds for Interdisciplinary Team of Hebei University of Technology under Grant No.JBKYTD2002funded by Science and Technology Project of Hebei Education Department under Grant No.JZX2023007supported by 2022 Interdisciplinary Postgraduate Training Program of Hebei University of Technology under Grant No.HEBUT-YXKJC-2022122.
文摘Most of the neural network architectures are based on human experience,which requires a long and tedious trial-and-error process.Neural architecture search(NAS)attempts to detect effective architectures without human intervention.Evolutionary algorithms(EAs)for NAS can find better solutions than human-designed architectures by exploring a large search space for possible architectures.Using multiobjective EAs for NAS,optimal neural architectures that meet various performance criteria can be explored and discovered efficiently.Furthermore,hardware-accelerated NAS methods can improve the efficiency of the NAS.While existing reviews have mainly focused on different strategies to complete NAS,a few studies have explored the use of EAs for NAS.In this paper,we summarize and explore the use of EAs for NAS,as well as large-scale multiobjective optimization strategies and hardware-accelerated NAS methods.NAS performs well in healthcare applications,such as medical image analysis,classification of disease diagnosis,and health monitoring.EAs for NAS can automate the search process and optimize multiple objectives simultaneously in a given healthcare task.Deep neural network has been successfully used in healthcare,but it lacks interpretability.Medical data is highly sensitive,and privacy leaks are frequently reported in the healthcare industry.To solve these problems,in healthcare,we propose an interpretable neuroevolution framework based on federated learning to address search efficiency and privacy protection.Moreover,we also point out future research directions for evolutionary NAS.Overall,for researchers who want to use EAs to optimize NNs in healthcare,we analyze the advantages and disadvantages of doing so to provide detailed guidance,and propose an interpretable privacy-preserving framework for healthcare applications.
基金Guangdong Basic and Applied Basic Research Foundation,Grant/Award Number:2020A1515110762Research Grants Council of the Hong Kong Special Administrative Region,China,Grant/Award Number:R6005‐20Shenzhen Key Laboratory of Advanced Energy Storage,Grant/Award Number:ZDSYS20220401141000001。
文摘Silicon(Si)is widely used as a lithium‐ion‐battery anode owing to its high capacity and abundant crustal reserves.However,large volume change upon cycling and poor conductivity of Si cause rapid capacity decay and poor fast‐charging capability limiting its commercial applications.Here,we propose a multilevel carbon architecture with vertical graphene sheets(VGSs)grown on surfaces of subnanoscopically and homogeneously dispersed Si–C composite nanospheres,which are subsequently embedded into a carbon matrix(C/VGSs@Si–C).Subnanoscopic C in the Si–C nanospheres,VGSs,and carbon matrix form a three‐dimensional conductive and robust network,which significantly improves the conductivity and suppresses the volume expansion of Si,thereby boosting charge transport and improving electrode stability.The VGSs with vast exposed edges considerably increase the contact area with the carbon matrix and supply directional transport channels through the entire material,which boosts charge transport.The carbon matrix encapsulates VGSs@Si–C to decrease the specific surface area and increase tap density,thus yielding high first Coulombic efficiency and electrode compaction density.Consequently,C/VGSs@Si–C delivers excellent Li‐ion storage performances under industrial electrode conditions.In particular,the full cells show high energy densities of 603.5 Wh kg^(−1)and 1685.5 Wh L^(−1)at 0.1 C and maintain 80.7%of the energy density at 3 C.
基金University-level Graduate Education Reform Project of Yangtze University(YJY202329).
文摘Under the background of“artificial intelligence+X”,the development of landscape architecture industry ushers in new opportunities,and professional talents need to be updated to meet the social demand.This paper analyzes the cultivation demand of landscape architecture graduate students in the context of the new era,and identifies the problems by comparing the original professional graduate training mode.The new cultivation mode of graduate students in landscape architecture is proposed,including updating the target orientation of the discipline,optimizing the teaching system,building a“dualteacher”tutor team,and improving the“industry-university-research-utilization”integrated cultivation,so as to cultivate high-quality compound talents with disciplinary characteristics.
文摘Canopy and branch architectures in high-density orchards can be crucial in production and fruit quality. The influence of two canopy orientations (Upright and Tilted) in combination with two arm (branch) architectures (Shortened or Overlapped) on tree growth, yield components, fruit quality, and leaf mineral nutrients in an “Aztec Fuji” apple (Malus domestica Bork.) high-density orchard was studied over five years. Tilted trees with shortened arm configuration (TilShArm) always had significantly larger trunk cross-sectional area (TCSA) than Upright trees with an Overlapped arm configuration (UpOverArm) every year from 2012 to 2016. Trees with a TilShArm system had more cumulative fruit per tree than those with an Upright orientation. Trees with a tilted canopy (TilShArm and TilOverArm) tended to have higher yield per tree and yield per hectare than those with an upright system. Trees with a TilShArm system were more precocious and had more yield per tree than those with an upright canopy orientation in 2012. When values were polled over five years, trees with an upright canopy-shortened arm system (UpShArm) treatment had a lower biennial bearing index (BBI) than those with an upright canopy-overlapped system (UpOverArm). Trees receiving an arm shortening (UpShArm or TilShArm) configuration often had larger fruits than those with overlapped arms (UpOverArm and TilOverArm). Fruit from trees receiving an UpOverArm had higher fruit firmness than those from trees with other canopy-branch arrangements at harvest due to their smaller size. Fruit from trees with a TilShArm and TilOverArm had significantly higher water core and bitter pit but lower sunburn than trees with an upright canopy (UpShArm and UpOverArm). Leaves from trees with an UpOverArm canopy-branch configuration had the lowest leaf Ca but the highest leaf K and Fe concentrations among all treatments.
基金supported by the National Key R&D Program of China(2020YFE0202500).
文摘A multi-group cross-section library is fundamental for deterministic lattice physics calculations.Most existing multi-group cross-section libraries are customized for particular computer codes,as well as for particular types of nuclear reactors.This paper presents an HDF5-format multi-group cross-section library named XPZLIB.XPZLIB was produced using a selfdeveloped XPZR module integrated into the NJOY2016 code,and an in-house PyNjoy2022 system was developed for autoprocessing.XPZLIB contains detailed data content and well-organized data structures that are user-and developer-friendly.Three typical XPZLIBs with different numbers of energy groups,nuclides,and depletion reaction types were released via the Tsinghua cloud website.Furthermore,the applicability of the released XPZLIBs was investigated using HTGR and PWR lattice calculations,which can provide guidance for applying XPZLIB under different scenarios.
基金This work was supported by the earmarked fund for China Agriculture Research System(CARS-02-16).
文摘The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure.
基金the National Natural Science Foundation of China(32370248)the Jiangsu Seed Industry Revitalization Project(JBGS[2021]001)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Rice(Oryza sativa)plant architecture and grain shape,which determine grain quality and yield,are modulatedby auxin and brassinosteroid via regulation of cell elongation and proliferation.We review the signaltransduction of these hormones and the crosstalk between their signals on the regulation of rice plantarchitecture and grain shape.
基金funded by the National Key Research and Development Program of China(2020YFD1001004)the China Agricultural Research System(CARS-15-06).
文摘Cotton architecture is determined by the differentiation fate transition of axillary meristem(AM),and influences cotton yield and the efficiency of mechanized harvesting.We observed that the initiation of flowering primordium was earlier in early-maturing than that in late-maturing cultivars during the differentiation and development of AM.The RNA-Seq and expression level analyses showed that genes FLAVIN BINDING,KELCH REPEAT,F-BOX1(GhFKF1),and GIGANTEA(GhGI)were in response to circadian rhythms,and involved in the regulation of cotton flowering.The gene structure,predicted protein structure,and motif content analyses showed that in Arabidopsis,cotton,rapseed,and soybean,proteins GhFKF1 and GhGI were functionally conserved and share evolutionary origins.Compared to the wild type,in GhFKF1 mutants that were created by the CRISPR/Cas9 system,the initiation of branch primordium was inhibited.Conversely,the knocking out of GhGI increased the number of AM differentiating into flower primordium,and there were much more lateral branch differentiation and development.Besides,we investigated that proteins GhFKF1 and GhGI can interact with each other.These results suggest that GhFKF1 and GhGI are key regulators of cotton architecture development,and may collaborate to regulate the differentiation fate transition of AM,ultimately influencing plant architecture.We describe a strategy for using the CRISPR/Cas9 system to increase cotton adaptation and productivity by optimizing plant architecture.
基金supported by the National Natural Science Foundation of China(31925029,31471457)the National Key Research and Development Project of China(2021YFD120010105)Guangdong Key Laboratory of New Technology in Rice Breeding(2020B1212060047)。
文摘Panicle architecture is an agronomic determinant of crop yield and a target for cereal crop improvement.To investigate its molecular mechanisms in rice,we performed map-based cloning and characterization of OPEN PANICLE 1(OP1),a gain-of-function allele of LIGULELESS 1(LG1),controlling the spread-panicle phenotype.This allele results from a 48-bp deletion in the LG1 upstream region and promotes pulvinus development at the base of the primary branch.Increased OP1 expression and altered panicle phenotype in chimeric transgenic plants and upstream-region knockout mutants indicated that the deletion regulates spread-panicle architecture in the mutant spread panicle 1(sp1).Knocking out BRASSINOSTEROID UPREGULATED1(BU1)gene in the background of OP1 complementary plants resulted in compact panicles,suggesting OP1 may regulate inflorescence architecture via the brassinosteroid signaling pathway.We regard that manipulating the upstream regulatory region of OP1 or genes involved in BR signal pathway could be an efficient way to improve rice inflorescence architecture.
基金supported by the Fundamental Research Grant Scheme by Ministry of Higher Education Malaysia(FRGS/1/2021/STG04/XMU/02/1 and FRGS/1/2022/TK09/XMU/03/2)the Xiamen University Malaysia Research Fund(XMUMRF/2023-C11/IENG/0056)。
文摘MXene has been the limelight for studies on electrode active materials,aiming at developing supercapacitors with boosted energy density to meet the emerging influx of wearable and portable electronic devices.Despite its various desirable properties including intrinsic flexibility,high specific surface area,excellent metallic conductivity and unique abundance of surface functionalities,its full potential for electrochemical performance is hindered by the notorious restacking phenomenon of MXene nanosheets.Ascribed to its two-dimensional(2D)nature and surface functional groups,inevitable Van der Waals interactions drive the agglomeration of nanosheets,ultimately reducing the exposure of electrochemically active sites to the electrolyte,as well as severely lengthening electrolyte ion transport pathways.As a result,energy and power density deteriorate,limiting the application versatility of MXene-based supercapacitors.Constructing 3D architectures using 2D nanosheets presents as a straightforward yet ingenious approach to mitigate the fatal flaws of MXene.However,the sheer number of distinct methodologies reported,thus far,calls for a systematic review that unravels the rationale behind such 3D MXene structural designs.Herein,this review aims to serve this purpose while also scrutinizing the structure–property relationship to correlate such structural modifications to their ensuing electrochemical performance enhancements.Besides,the physicochemical properties of MXene play fundamental roles in determining the effective charge storage capabilities of 3D MXene-based electrodes.This largely depends on different MXene synthesis techniques and synthesis condition variations,hence,elucidated in this review as well.Lastly,the challenges and perspectives for achieving viable commercialization of MXene-based supercapacitor electrodes are highlighted.
文摘通过对国内外Living Library的考察,结合Web2.0和社会性网络SNS的发展,提出了一个基于SNS的Living Library虚拟社区模型:Virtual Living Library(简称VLL),并就VLL的概念模型的构建、实践和评价等方面进行了论述,讨论了VLL的建设可能性和发展前景。
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
基金The study is funded by the Cooperation Project of China National Petroleum Company(CNPC)and China University of Petroleum-Beijing(CUPB)(No.RIPED-2021-JS-552)the National Natural Science Foundation of China(Nos.42002112,42272110)+2 种基金the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the Science Foundation for Youth Scholars of CUPB(No.24620222BJRC006)We thank the China Scholarship Council(CSC)(No.202106440048)for having funded the research stay of Mei Chen at MARUM,University of Bremen.We thank Elda Miramontes for her constructive comments and suggestions that helped us improve our manuscript.
文摘Seafloor topography plays an important role in the evolution of submarine lobes.However,it is still not so clear how the shape of slope affects the three-dimensional(3-D)architecture of submarine lobes.In this study,we analyze the effect of topography factors on different hierarchical lobe architectures that formed during Pliocene to Quaternary in the Rovuma Basin offshore East Africa.We characterize the shape,size and growth pattern of different hierarchical lobe architectures using 3-D seismic data.We find that the relief of the topographic slope determines the location of preferential deposition of lobe complexes and single lobes.When the topography is irregular and presents topographic lows,lobe complexes first infill these depressions.Single lobes are deposited preferentially at positions with higher longitudinal(i.e.across-slope)slope gradients.As the longitudinal slope becomes higher,the aspect ratio of the single lobes increases.Lateral(i.e.along-slope)topography does not seem to have a strong influence on the shape of single lobe,but it seems to affect the overlap of single lobes.When the lateral slope gradient is relatively high,the single lobes tend to have a larger overlap surface.Furthermore,as the average of lateral slope and longitudinal slope gets greater,the width/thickness ratio of the single lobe is smaller,i.e.sediments tend to accumulate vertically.The results demonstrate that the shape of slopes more comprehensively influences the 3-D architecture of lobes in natural deep-sea systems than previously other lobe deposits and analogue experiments,which helps us better understand the development and evolution of the distal parts of turbidite systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12047503 and 12105343)。
文摘We develop universal quantum computing models that form a family of quantum von Neumann architectures,with modular units of memory,control,CPU,and internet,besides input and output.This family contains three generations characterized by dynamical quantum resource theory,and it also circumvents no-go theorems on quantum programming and control.Besides universality,such a family satisfies other desirable engineering requirements on system and algorithm design,such as modularity and programmability,hence serves as a unique approach to building universal quantum computers.