期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Improved YOLOv8n Model for Detecting Helmets and License Plates on Electric Bicycles 被引量:1
1
作者 Qunyue Mu Qiancheng Yu +2 位作者 Chengchen Zhou Lei Liu Xulong Yu 《Computers, Materials & Continua》 SCIE EI 2024年第7期449-466,共18页
Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cam... Wearing helmetswhile riding electric bicycles can significantly reduce head injuries resulting fromtraffic accidents.To effectively monitor compliance,the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles.However,manual enforcement by traffic police is time-consuming and labor-intensive.Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques.This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles,addressing these challenges.The proposedmodel improves uponYOLOv8n by deepening the network structure,incorporating weighted connections,and introducing lightweight convolutional modules.These modifications aim to enhance the precision of small target recognition while reducing the model’s parameters,making it suitable for deployment on low-performance devices in real traffic scenarios.Experimental results demonstrate that the model achieves an mAP@0.5 of 91.8%,showing an 11.5%improvement over the baselinemodel,with a 16.2%reduction in parameters.Additionally,themodel achieves a frames per second(FPS)rate of 58,meeting the accuracy and speed requirements for detection in actual traffic scenarios. 展开更多
关键词 YOLOv8 object detection electric bicycle helmet detection electric bicycle license plate detection
下载PDF
Neural Network-Powered License Plate Recognition System Design
2
作者 Sakib Hasan Md Nagib Mahfuz Sunny +1 位作者 Abdullah Al Nahian Mohammad Yasin 《Engineering(科研)》 2024年第9期284-300,共17页
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ... The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations. 展开更多
关键词 Intelligent Traffic Control Systems Automatic license Plate Recognition (ALPR) Neural Networks Vehicle Surveillance Traffic Management license Plate Recognition Algorithms Image Extraction Character Segmentation Character Recognition Low-Light Environments Inclement Weather Empirical Findings Algorithm Accuracy Simulation Outcomes DIGITALIZATION
下载PDF
Super-resolution reconstruction for license plate images of moving vehicles
3
作者 路小波 曾维理 《Journal of Southeast University(English Edition)》 EI CAS 2010年第3期457-460,共4页
A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield ... A novel reconstruction method to improve the recognition of license plate texts of moving vehicles in real traffic videos is proposed, which fuses complimentary information among low resolution (LR) images to yield a high resolution (HR) image. Based on the regularization super-resolution (SR) reconstruction schemes, this paper first introduces a residual gradient (RG) term as a new regularization term to improve the quality of the reconstructed image. Moreover, L1 norm is used to measure the residual data (RD) term and the RG term in order to improve the robustness of the proposed method. Finally, the steepest descent method is exploited to solve the energy functional. Simulated and real acquired video sequence experiments show the effectiveness and practicability of the proposed method and demonstrate its superiority over the bi-cubic interpolation and discontinuity adaptive Markov random field (DAMRF) SR method in both signal to noise ratios (SNR) and visual effects. 展开更多
关键词 SUPER-RESOLUTION residual gradient term residual data term license plate REGULARIZATION
下载PDF
Vehicle detection based on information fusion of vehicle symmetrical contour and license plate position 被引量:1
4
作者 连捷 赵池航 +2 位作者 张百灵 何杰 党倩 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期240-244,共5页
An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the ve... An efficient vehicle detection approach is proposed for traffic surveillance images, which is based on information fusion of vehicle symmetrical contour and license plate position. The vertical symmetry axis of the vehicle contour in an image is. first detected, and then the vertical and the horizontal symmetry axes of the license plate are detected using the symmetry axis of the vehicle contour as a reference. The vehicle location in an image is determined using license plate symmetry axes and the vertical and the horizontal projection maps of the vehicle edge image. A dataset consisting of 450 images (15 classes of vehicles) is used to test the proposed method. The experimental results indicate that compared with the vehicle contour-based, the license plate location-based, the vehicle texture-based and the Gabor feature-based methods, the proposed method is the best with a detection accuracy of 90.7% and an elapsed time of 125 ms. 展开更多
关键词 vehicle detection symmetrical contour license plate position information fusion
下载PDF
Vehicle License Plate Character Segmentation 被引量:6
5
作者 Mei-Sen Pan Jun-Biao Yan Zheng-Hong Xiao 《International Journal of Automation and computing》 EI 2008年第4期425-432,共8页
Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical til... Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation. 展开更多
关键词 Vehicle license plate (VLP) least square method (LSM) auxiliary lines character segmentation pixel.
下载PDF
Automatic Vehicle License Plate Recognition Using Optimal Deep Learning Model 被引量:5
6
作者 Thavavel Vaiyapuri Sachi Nandan Mohanty +3 位作者 M.Sivaram Irina V.Pustokhina Denis A.Pustokhin K.Shankar 《Computers, Materials & Continua》 SCIE EI 2021年第5期1881-1897,共17页
The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of... The latest advancements in highway research domain and increase in the number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System(ITS).One of the popular research areas i.e.,Vehicle License Plate Recognition(VLPR)aims at determining the characters that exist in the license plate of the vehicles.The VLPR process is a difficult one due to the differences in viewpoint,shapes,colors,patterns,and non-uniform illumination at the time of capturing images.The current study develops a robust Deep Learning(DL)-based VLPR model using Squirrel Search Algorithm(SSA)-based Convolutional Neural Network(CNN),called the SSA-CNN model.The presented technique has a total of four major processes namely preprocessing,License Plate(LP)localization and detection,character segmentation,and recognition.Hough Transform(HT)is applied as a feature extractor and SSA-CNN algorithm is applied for character recognition in LP.The SSA-CNN method effectively recognizes the characters that exist in the segmented image by optimal tuning of CNN parameters.The HT-SSA-CNN model was experimentally validated using the Stanford Car,FZU Car,and HumAIn 2019 Challenge datasets.The experimentation outcome verified that the presented method was better under several aspects.The projected HT-SSA-CNN model implied the best performance with optimal overall accuracy of 0.983%. 展开更多
关键词 Deep learning license plate recognition intelligent transportation SEGMENTATION
下载PDF
YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security 被引量:2
7
作者 Fares Alharbi Reem Alshahrani +2 位作者 Mohammed Zakariah Amjad Aldweesh Abdulrahman Abdullah Alghamdi 《Computers, Materials & Continua》 SCIE EI 2023年第12期3697-3722,共26页
Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless... Privacy and trust are significant issues in intelligent transportation systems(ITS).Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels,optical fiber,and blockchain technology.The Internet of Things(IoT)is a network of connected,interconnected gadgets.Privacy issues occasionally arise due to the amount of data generated.However,they have been primarily addressed by blockchain and smart contract technology.While there are still security issues with smart contracts,primarily due to the complexity of writing the code,there are still many challenges to consider when designing blockchain designs for the IoT environment.This study uses traditional blockchain technology with the“You Only Look Once”(YOLO)object detection method to accurately locate and identify license plates.While YOLO and blockchain technologies used for intelligent vehicle license plate recognition are promising,they have received limited research attention.Real-time object identification and recognition would be possible by combining a cutting-edge object detection technique with a regional convolutional neural network(RCNN)built with the tensor flow core open source libraries.This method works reasonably well for identifying any license plate.The Automatic License Plate Recognition(ALPR)approach delivered outstanding results in various datasets.First,with a recognition rate of 96.2%,our system(UFPR-ALPR)surpassed the previously used technology,consisting of 4500 frames and around 150 films.Second,a deep learning algorithm was trained to recognize images of license plate numbers using the UFPR-ALPR dataset.Third,the license plate’s characters were complicated for standard methods to identify because of the shifting lighting correctly.The proposed model,however,produced beneficial outcomes. 展开更多
关键词 Intelligent transportation system blockchain technology license plate recognition PRIVACY YOLO deep learning technique ALPR
下载PDF
License Plate Recognition via Attention Mechanism 被引量:1
8
作者 Longjuan Wang Chunjie Cao +2 位作者 Binghui Zou Jun Ye Jin Zhang 《Computers, Materials & Continua》 SCIE EI 2023年第4期1801-1814,共14页
License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This p... License plate recognition technology use widely in intelligent trafficmanagement and control. Researchers have been committed to improving thespeed and accuracy of license plate recognition for nearly 30 years. This paperis the first to propose combining the attention mechanism with YOLO-v5and LPRnet to construct a new license plate recognition model (LPR-CBAMNet).Through the attention mechanism CBAM(Convolutional Block AttentionModule), the importance of different feature channels in license platerecognition can be re-calibrated to obtain proper attention to features. Forceinformation to achieve the purpose of improving recognition speed andaccuracy. Experimental results show that the model construction methodis superior in speed and accuracy to traditional license plate recognitionalgorithms. The accuracy of the recognition model of the CBAM model isincreased by two percentage points to 97.2%, and the size of the constructedmodel is only 1.8 M, which can meet the requirements of real-time executionof embedded low-power devices. The codes for training and evaluating LPRCBAM-Net are available under the open-source MIT License at: https://github.com/To2rk/LPR-CBAM-Net. 展开更多
关键词 license plate detection RECOGNITION CBAM YOLO v5
下载PDF
Deep Learning Based License Plate Number Recognition for Smart Cities 被引量:1
9
作者 T.Vetriselvi E.Laxmi Lydia +4 位作者 Sachi Nandan Mohanty Eatedal Alabdulkreem Shaha Al-Otaibi Amal Al-Rasheed Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第1期2049-2064,共16页
Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enha... Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective.Precise controlling and management of traffic conditions,increased safety and surveillance,and enhanced incident avoidance and management should be top priorities in smart city management.At the same time,Vehicle License Plate Number Recognition(VLPNR)has become a hot research topic,owing to several real-time applications like automated toll fee processing,traffic law enforcement,private space access control,and road traffic surveillance.Automated VLPNR is a computer vision-based technique which is employed in the recognition of automobiles based on vehicle number plates.The current research paper presents an effective Deep Learning(DL)-based VLPNR called DLVLPNR model to identify and recognize the alphanumeric characters present in license plate.The proposed model involves two main stages namely,license plate detection and Tesseract-based character recognition.The detection of alphanumeric characters present in license plate takes place with the help of fast RCNN with Inception V2 model.Then,the characters in the detected number plate are extracted using Tesseract Optical Character Recognition(OCR)model.The performance of DL-VLPNR model was tested in this paper using two benchmark databases,and the experimental outcome established the superior performance of the model compared to other methods. 展开更多
关键词 Deep learning smart city tesseract computer vision vehicle license plate recognition
下载PDF
A novel license plate recognition method using HTD and VTD features 被引量:2
10
作者 Zhang Xiangdong Shen Peiyi Li Liangchao Wang Wei Bai Jianhua Zhang Wenbo 《Engineering Sciences》 EI 2010年第1期71-76,共6页
In this paper, a novel method of licence plate recognition (LPR) using the vertical traverse density (VTD) and horizontal traverse density (HTD) is presented. The neutral network algorithm using VTD and HTD features i... In this paper, a novel method of licence plate recognition (LPR) using the vertical traverse density (VTD) and horizontal traverse density (HTD) is presented. The neutral network algorithm using VTD and HTD features is also an innovation. In addition, a so called secondary recognition method which splits characters into different parts is developed. Experimental results show that it is a simple and fast algorithm, which meets the request of real time and nicety performances of LPR and thus has applied value in intelligence transportation system (ITS). 展开更多
关键词 license plate recognition character segment character recognition VTD and HTD features
下载PDF
License Plate Recognition for Parking Control System by Mathematical Morphology 被引量:1
11
作者 Javier Ortiz Alberto Gómez 《Journal of Electronic Science and Technology》 CAS 2014年第1期81-84,共4页
Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehic... Nowadays, license plate recognition for parking systems is a critical task to provide automatic control of customers and payment. This paper introduces a new method for automatic recognition of license plates of vehicles by mathematical morphology. The proposed method can provide the license plate number of the plates in different light conditions, colors, sizes, and inclination (angles). The algorithm can recognize the license plates of European Union vehicles quickly and correctly. The pattern learning of mathematical skeletons has high efficiency in the process. The performance of the algorithm is demonstrated well by the test in a parking control system. 展开更多
关键词 license plate recognition mathe-matical morphology skeleton.
下载PDF
Adversarial Attacks on License Plate Recognition Systems 被引量:1
12
作者 Zhaoquan Gu Yu Su +5 位作者 Chenwei Liu Yinyu Lyu Yunxiang Jian Hao Li Zhen Cao Le Wang 《Computers, Materials & Continua》 SCIE EI 2020年第11期1437-1452,共16页
The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,re... The license plate recognition system(LPRS)has been widely adopted in daily life due to its efficiency and high accuracy.Deep neural networks are commonly used in the LPRS to improve the recognition accuracy.However,researchers have found that deep neural networks have their own security problems that may lead to unexpected results.Specifically,they can be easily attacked by the adversarial examples that are generated by adding small perturbations to the original images,resulting in incorrect license plate recognition.There are some classic methods to generate adversarial examples,but they cannot be adopted on LPRS directly.In this paper,we modify some classic methods to generate adversarial examples that could mislead the LPRS.We conduct extensive evaluations on the HyperLPR system and the results show that the system could be easily attacked by such adversarial examples.In addition,we show that the generated images could also attack the black-box systems;we show some examples that the Baidu LPR system also makes incorrect recognitions.We hope this paper could help improve the LPRS by realizing the existence of such adversarial attacks. 展开更多
关键词 license plate recognition system adversarial examples deep neural networks
下载PDF
Libyan Licenses Plate Recognition Using Template Matching Method 被引量:1
13
作者 Alla A. El. Senoussi Abdella 《Journal of Computer and Communications》 2016年第7期62-71,共10页
License plate recognition (LPR) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. The work presented in this paper aims to create a compu... License plate recognition (LPR) applies image processing and character recognition technology to identify vehicles by automatically reading their license plates. The work presented in this paper aims to create a computer vision system capable of taking real-time input image from a static camera and identifying the license plate from extracted image. This problem is examined in two stages: First the license plate region detection and extraction from background and plate segmentation to sub-images, and second the character recognition stage. The method used for the license plate region detection is based on the assumption that the license plate area is a high concentration of smaller details, making it a region of high intensity of edges. The Sobel filter and their vertical and horizontal projections are used to identify the plate region. The result of testing this stage was an accuracy of 67.5%. The final stage of the LPR system is optical character recognition (OCR). The method adopted for this stage is based on template matching using correlation. Testing the performance of OCR resulted in an overall recognition rate of 87.76%. 展开更多
关键词 license Plate Recognition Optical Character Recognition Computer Vision System
下载PDF
Research and Implementation for License Plate Recognition Based on Improved Projection Algorithm 被引量:1
14
作者 LI Xiu-juan Yimamu' aishan.Abudoulikemu 《Computer Aided Drafting,Design and Manufacturing》 2013年第2期53-56,75,共5页
This paper analyzes and dissertates the discrete wavelet transform and improved projection algorithm in four kernel stages (image preprocessing, license plate localization, character segmentation, license plate recog... This paper analyzes and dissertates the discrete wavelet transform and improved projection algorithm in four kernel stages (image preprocessing, license plate localization, character segmentation, license plate recognition, i.e.) of license plate recognition system in detail. At last, it gives some conclusions and suggestions on future research. 展开更多
关键词 license plate recognition wavelet transform improved projection algorithm
下载PDF
A Practical Method of Car License Plate Character Segmentation Based on Morphology and Labeling
15
作者 WANG Ming-xiang, MO Yu-long School of Communication and Information Engineering , Shanghai University, Shanghai 200072,China 《Advances in Manufacturing》 SCIE CAS 2000年第S1期54-57,共4页
In this paper, a kind of practical image segmentation algorithm for segment characters from car license plate is presented, based on morphology and labeling. First by morphological operation, noise in the binary image... In this paper, a kind of practical image segmentation algorithm for segment characters from car license plate is presented, based on morphology and labeling. First by morphological operation, noise in the binary image of license plate can be greatly decreased. Then, by labeling, each connected pixel component is given a unique label. Finally, by the known data of license plate, each character is extracted correctly. The advantage of this method is that it can deal with plates with different sizes and connected characters plates, and inclined plates. The experiment results show that it is an effective way to extract characters from the license plate, and can be put into practical use. 展开更多
关键词 MORPHOLOGY LABELING car license plate recognition image segmentation character segmentation
下载PDF
Hybrid Metaheuristics Based License Plate Character Recognition in Smart City
16
作者 Esam A.Al.Qaralleh Fahad Aldhaban +2 位作者 Halah Nasseif Bassam A.Y.Alqaralleh Tamer AbuKhalil 《Computers, Materials & Continua》 SCIE EI 2022年第9期5727-5740,共14页
Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On th... Recent technological advancements have been used to improve the quality of living in smart cities.At the same time,automated detection of vehicles can be utilized to reduce crime rate and improve public security.On the other hand,the automatic identification of vehicle license plate(LP)character becomes an essential process to recognize vehicles in real time scenarios,which can be achieved by the exploitation of optimal deep learning(DL)approaches.In this article,a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition(HMODL-ALPCR)technique has been presented for smart city environments.The major intention of the HMODL-ALPCR technique is to detect LPs and recognize the characters that exist in them.For effective LP detection process,mask regional convolutional neural network(Mask-RCNN)model is applied and the Inception with Residual Network(ResNet)-v2 as the baseline network.In addition,hybrid sunflower optimization with butterfly optimization algorithm(HSFO-BOA)is utilized for the hyperparameter tuning of the Inception-ResNetv2 model.Finally,Tesseract based character recognition model is applied to effectively recognize the characters present in the LPs.The experimental result analysis of the HMODL-ALPCR technique takes place against the benchmark dataset and the experimental outcomes pointed out the improved efficacy of the HMODL-ALPCR technique over the recent methods. 展开更多
关键词 Smart city license plate recognition optimal deep learning metaheuristic algorithms parameter tuning
下载PDF
Multi-Object Detection of Chinese License Plate in Complex Scenes
17
作者 Dan Liu Yajuan Wu +2 位作者 Yuxin He Lu Qin Bochuan Zheng 《Computer Systems Science & Engineering》 SCIE EI 2021年第1期145-156,共12页
Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high... Multi-license plate detection in complex scenes is still a challenging task because of multiple vehicle license plates with different sizes and classes in the images having complex background.The edge features of high-density distribution and the high curvature features of stroke turning of Chinese character are important signs to distinguish Chinese license plate from other objects.To accurately detect multiple vehicle license plates with different sizes and classes in complex scenes,a multi-object detection of Chinese license plate method based on improved YOLOv3 network was proposed in this research.The improvements include replacing the residual block of the YOLOv3 backbone network with the Inception-ResNet-A block,imbedding the SPP block into the detection network,cutting the redundant Inception-ResNet-A block to suit for the multi-license plate detection task,and clustering the ground truth boxes of license plates to obtain a new set of anchor boxes.A Chinese vehicle license plate image dataset was built for training and testing the improved network,and the location and class of the license plates in each image were accurately labeled.The dataset has 62,153 pieces of images and 4 classes of China vehicle license plates,almost images have multiple license plates with different sizes.Experiments demonstrated that the multilicense plate detection method obtained 83.4%mAP,98.88%precision,98.17%recall,98.52 F1 score,89.196 BFLOPS and 22 FPS on the test dataset,and whole performance was better than the other five compared networks including YOLOv3,SSD,Faster-RCNN,EfficientDet and RetinaNet. 展开更多
关键词 Chinese vehicle license plate multiple license plate multi-object detection Inception-ResNet-A spatial pyramid pooling
下载PDF
Automatic Vehicle License Recognition Based on Video Vehicular Detection System
18
作者 杨兆选 陈杨 +1 位作者 何英华 吴骏 《Transactions of Tianjin University》 EI CAS 2006年第3期199-203,共5页
Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based... Traditional methods of license character extraction cannot meet the requirements of recognition accuracy and speed rendered by the video vehicular detection system. Therefore, a license plate localization method based on multi-scale edge detection and a character segmentation algorithm based on Markov random field model is presented. Results of experiments demonstrate that the method yields more accurate license character extraction in contrast to traditional localization method based on edge detection by difference operator and character segmentation based on threshold. The accuracy increases from 90% to 94% under preferable illumination, while under poor condition, it increases more than 5%. When the two improved algorithms are used, the accuracy and speed of automatic license recognition meet the system's requirement even under the noisy circumstance or uneven illumination. 展开更多
关键词 vehicle license recognition license plate localization character segmentation
下载PDF
Study on the vehicle license plate tilt correction
19
作者 Li Guihui Li Yuanjin Li Lanyou 《仪器仪表学报》 EI CAS CSCD 北大核心 2006年第z1期715-717,共3页
The shortage of current different approaches of the vehicle license plate(VLP) tilt correction is analyzed in the paper and a new rotary correction method put forward based on the former ways of the VLP tilt correctio... The shortage of current different approaches of the vehicle license plate(VLP) tilt correction is analyzed in the paper and a new rotary correction method put forward based on the former ways of the VLP tilt correction in the horizontal direction and the vertical direction Owing to the VLP tilt taking place in the vertical direction,the array of the image’s pixels of the same column is broken,and even different rows come into being superposition.The VLP tilt taking place in the horizontal direction,by which the array of the image’s pixels of the same row broken,and so much as different columns come into being superposition. 展开更多
关键词 tilt correction vehicle license plate image processing hough transform bilinear interpolation
下载PDF
Implementing VLPR systems based on TMS320DM642 被引量:3
20
作者 ZHU Le-qing ZHANG San-yuan YE Xiu-zi 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期2005-2016,共12页
This paper gives a practical schema for using DSP boards to construct Vehicle License Plate Recognition (VLPR) modules that could be embedded in any Intelligent Transportation System (ITS). Using DSP can avoid the hea... This paper gives a practical schema for using DSP boards to construct Vehicle License Plate Recognition (VLPR) modules that could be embedded in any Intelligent Transportation System (ITS). Using DSP can avoid the heavy investment in dedicated VLPR system and improve the computational power compared to PC software environment. Low cost, high computational power, and high flexibility of DSP provide the License Plate Recognition System (LPRS) an excellent cost-effective solution to execute the major part of the recognition tasks. This paper describes a successful implementation of VLPR system based on Texas Instruments (TI)'s TMS320DM642. The DSP board acquires video (which could be output to a monitor for surveillance) from a camera, captures images from the video, locates and recognizes the license plates in images, and then sends the recognized results and related images after compression to a host PC through the network. Finally, the overall software is optimized according to the features of DM642 chip. Experiments showed that the DSP VLPR system performs well on the local license plates, and that the processing speed and accuracy can meet the requirement of practical applications. 展开更多
关键词 license Plate Recognition (LPR) Embedded system Image processing DSP DM642
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部