期刊文献+
共找到113篇文章
< 1 2 6 >
每页显示 20 50 100
Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
1
作者 Yuchen Yang Lin Ma +2 位作者 Jie Yu Zewen Zhao Pengfei You 《Journal of Renewable Materials》 SCIE EI 2023年第3期1153-1179,共27页
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe... The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results. 展开更多
关键词 life cycle assessment Organic Rankine cycle NANOREFRIGERANT total energy consumption energy payback time
下载PDF
Carbon footprint accounting for cigar production processes: A life cycle assessment perspective
2
作者 Guanzhun Cao Xiaoyao Guo +8 位作者 Chuan Feng Tong Li Feng Cui Yuan Xu Shuo Yang Qingsong Wang Leping Chen Xueliang Yuan Guifang Chen 《Chinese Journal of Population,Resources and Environment》 2023年第4期231-238,共8页
Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in ... Although the tobacco industry is a significant contributor to energy consumption and carbon emissions its negative environmental impact has received inadequate attention globally.Cigarette factories are a key link in the tobacco industry’s production chain,and using data provided by a cigarette factory in China we conduct a life cycle assessment to account for the carbon footprint of cigar production in cigarette factories.The results of the assessment show that factory air conditioning is the most important contributor to the environmental load of the cigar manufacturing process,while electricity is the key factor that contributes the greatest envi‐ronmental load across all of the processes in the product life cycle.In addition,packaging,including small boxes and cigarette cartons,has a significant impact on the industry’s environmental footprint due to its use of raw materials.We find the carbon footprint of the entire production process for cigar products to be 383.59 kg CO_(2) eq.Based on our findings,we suggest ways to optimize cigar/cigarette factory processes to re‐duce carbon emissions that can help to promote sustainable development in related industries. 展开更多
关键词 Cigar process life cycle assessment Carbon emissions Environmental impact
下载PDF
Carbon emissions reduction potentiality for railroad transportation based on life cycle assessment
3
作者 Yintao Lu Tongtong Zhang +3 位作者 Shengming Qiu Xin Liu Xiaohua Yu Hong Yao 《High-Speed Railway》 2023年第3期195-203,共9页
This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life... This study addresses the comparative carbon emissions of different transportation modes within a unified evaluation framework,focusing on their carbon footprints from inception to disposal.Specifically,the entire life cycle carbon emissions of High-Speed Rail(HSR),battery electric vehicles,conventional internal combustion engine vehicles,battery electric buses,and conventional internal combustion engine buses are analyzed.The life cycle is segmented into vehicle manufacturing,fuel or electricity production,operational,and dismantlingrecycling stages.This analysis is applied to the Beijing-Tianjin intercity transportation system to explore emission reduction strategies.Results indicate that HSR demonstrates significant carbon emission reduction,with an intensity of only 24%-32% compared to private vehicles and 47%-89% compared to buses.Notably,HSR travel for Beijing-Tianjin intercity emits only 24% of private vehicle emissions,demonstrating the emission reduction benefits of transportation structure optimization.Additionally,predictive modeling reveals the potential for carbon emission reduction through energy structure optimization,providing a guideline for the development of effective transportation management systems. 展开更多
关键词 life cycle assessment High-speed-rail Transportation structure Intercity transportation Carbon emission reduction potentiality
下载PDF
Energy and Life Cycle Assessment of Zinc/Water Nanofluid Based Photovoltaic Thermal System
4
作者 Junaid Khan Rashid Ali +1 位作者 Muzammil Zubair Syed Mohd Yahya 《Energy Engineering》 EI 2022年第2期827-846,共20页
Cooling the PV surface in a Photovoltaic Thermal system is a pivotal operational aspect to be taken into account to achieve optimized values of performance parameters in a Photovoltaic Thermal System.The experimental ... Cooling the PV surface in a Photovoltaic Thermal system is a pivotal operational aspect to be taken into account to achieve optimized values of performance parameters in a Photovoltaic Thermal System.The experimental design used in this study facilitates the flow of varying concentrations of Zn-water nanofluid in serpentine copper tubing installed at the rear of the PV panel thereby preventing the PV surface temperature from increasing beyond the threshold value at which a decrease in electrical efficiency starts to occur.This fusion of solar thermal with PV devices leads to better electrical and thermal efficiency values resulting in decreased cell degradation over time and maximization of the lifespan of the PV module and the energy output from the PV system.Due to the superior thermal heat properties of nanofluids,their usage in such systems has become increasingly widespread.Life cycle metrics which include Energy Payback period,Energy Production Factor and life cycle conversion efficiency were evaluated for the PVT system by exhaustively chalking fundamental parameters such as embodied energy of the PVT setup and the total energy output from the PVT system.This research aims to be a major milestone in the evolutionary journey of Photovoltaic Thermal modules by guiding the engineers working on the theory,design and implementation of PVT systems towards its economic feasibility,environmental impact and energy sustainability. 展开更多
关键词 Photovoltaic thermal system nanofluids performance parameters life cycle assessment
下载PDF
Overall Life Cycle Comprehensive Assessment of Pneumatic and Electric Actuator 被引量:7
5
作者 ZHANG Yeming CAI Maolin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第3期584-594,共11页
Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion a... Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be obtained: Fossil fuels are the major environmental factor of pneumatic and electric actuators; Environmental impact of electric actuator is large than one of pneumatic actuator under the similar mechanical properties and working conditions of pneumatic and electric actuators. The results are correct and correspond with the actual mechanical properties of actuators. This paper proposes a comprehensive evaluation method of the actuators, which can solve the critical problem that similar electromechanical products are very difficult to be compared with each other from the angle of performance, cost and environment impact. 展开更多
关键词 ACTUATOR mechanical properties evaluation life cycle cost public device cost even method life cycle assessment
下载PDF
A techno-economic and life cycle assessment for the production of green methanol from CO_(2): catalyst and process bottlenecks 被引量:5
6
作者 Tomas Cordero-Lanzac Adrian Ramirez +6 位作者 Alberto Navajas Lieven Gevers Sirio Brunialti Luis MGandía Andrés T.Aguayo S.Mani Sarathy Jorge Gascon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期255-266,共12页
The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we pre... The success of catalytic schemes for the large-scale valorization of CO_(2) does not only depend on the development of active,selective and stable catalytic materials but also on the overall process design.Here we present a multidisciplinary study(from catalyst to plant and techno-economic/lifecycle analysis)for the production of green methanol from renewable H2 and CO_(2).We combine an in-depth kinetic analysis of one of the most promising recently reported methanol-synthesis catalysts(InCo)with a thorough process simulation and techno-economic assessment.We then perform a life cycle assessment of the simulated process to gauge the real environmental impact of green methanol production from CO_(2).Our results indicate that up to 1.75 ton of CO_(2) can be abated per ton of produced methanol only if renewable energy is used to run the process,while the sensitivity analysis suggest that either rock-bottom H2 prices(1.5$kg1)or severe CO_(2) taxation(300$per ton)are needed for a profitable methanol plant.Besides,we herein highlight and analyze some critical bottlenecks of the process.Especial attention has been paid to the contribution of H2 to the overall plant costs,CH4 trace formation,and purity and costs of raw gases.In addition to providing important information for policy makers and industrialists,directions for catalyst(and therefore process)improvements are outlined. 展开更多
关键词 CO_(2) METHANOL Kinetic modeling Process simulation life cycle assessment
下载PDF
Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment 被引量:4
7
作者 陈菓 陈晋 +1 位作者 彭金辉 万润东 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期198-204,共7页
A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quali... A greenness evaluation index and system of microwave-assisted leaching method were established.The effects of the life cycle assessment variables,such as the resource consumption,environment impact,cost,time and quality,were investigated,and the concept of green degree was applied in the production of synthetic rutile.An analytic hierarchy process was utilized to assess matrix of greenness evaluation.The Gauss-Seidel iterative matrix method was employed to solve the assessment matrix and obtain the weights and membership functions of all evaluation indexes.A fuzzy decision-making method was applied to build the greenness evaluation model,and then the scores of green degree in microwave-assisted leaching process was obtained.The greenness evaluation model was applied to the life cycle assessment of the microwave-assisted leaching process.The results show that the microwave-assisted leaching process has advantages over the conventional ones,with respect to energy-consumption,processing time and environmental protection. 展开更多
关键词 life cycle assessment greenness evaluation microwave-assisted leaching high titanium slag
下载PDF
Techno-Economic Analysis and Life Cycle Assessment for the Typical Intermediate Crude Refining Scheme in China 被引量:2
8
作者 Zhou Xin Yan Hao +4 位作者 Feng Xiang Zhao Hui Liu Yibin Chen Xiaobo Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2020年第4期35-45,共11页
The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved o... The integration of refinery and petrochemical units(IRPUs)has become an inevitable choice for the sustainable development of petrochemical industry.The utilization efficiency of petroleum resources could be improved obviously through IRPUs.However,integrating economic and environmental impacts into the model of IRPUs is still a grand challenge.Herein,a model called TEA-GHG-OPWM(Techno-Economic Analysis and GreenHouse Gases Oriented Plant-Wide Model)has been established on Aspen HYSYSTM platform to calculate the energy consumption,the technoeconomic performance,and the GHG emissions for two different kinds of schemes,viz,:VRHCU(Vacuum Residue Hydrocracking Unit)and VRDS-RFCC(Vacuum Residue Desulfurization and Residue Fluid Catalytic Cracking).Furthermore,a novel processing pathway named VGOHDT-HTMP-DC(Vacuum Gas Oil Hydrotreating,Hydrogenation and TMP coupling process and Delayed Coking)has also been developed to find methods to improve the economic performance based on a ten-million-CNY output value(TMYOV)and a reduced GHG emissions.Our results demonstrate that VRHCRU could consume more energy and emit more GHG(877.11 t of CO2 eq·TMYOV^-1·h^-1)than VRDS-RFCC(817.03 t of CO2 eq·TMYOV^-1·h^-1)and VGOHDT-HTMP-DC(721.96 t of CO2 eq·TMYOV^-1·h^-1),while obtaining a higher mass yield of petrochemicals.The VGOHDT-HTMP-DC process exhibits the lowest feedstock consumption,hydrogen consumption,energy consumption,and GHG emissions,indicating that VGOHDT-HTMP-DC has both well economic and environmentally friendly performance. 展开更多
关键词 techno-economic analysis life cycle assessment integration of refinery and petrochemical units intermediate base crude oil process simulation
下载PDF
Life cycle assessment of HFC-134a production by calcium carbide acetylene route in China 被引量:1
9
作者 Suisui Zhang Jingying Li +4 位作者 Yan Nie Luyao Qiang Boyang Bai Zhiwei Peng Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第2期236-244,共9页
HFC-134a is a widely used environment-friendly refrigerant.At present,China is the largest producer of HFC-134a in the world.The production of HFC-134a in China mainly adopts the calcium carbide acetylene route.Howeve... HFC-134a is a widely used environment-friendly refrigerant.At present,China is the largest producer of HFC-134a in the world.The production of HFC-134a in China mainly adopts the calcium carbide acetylene route.However,the production route has high resource and energy consumption and large waste emission,and few of the studies addressed on the environmental performance of its production process.This study quantified the environmental performance of HFC-134a production by calcium carbide route via carrying out a life cycle assessment(LCA)using the CML 2001 method.And uncertainty analysis by Monte-Carlo simulation was also carried out.The results showed that electricity had the most impact on the environment,followed by steam,hydrogen fluoride and chlorine,and the impact of direct CO_(2) emissions in calcium carbide production stage on the global warming effect also could not be ignored.Therefore,the clean energy(e.g.,wind,solar,biomass,and natural gas)was used to replace coal-based electricity and coal-fired steam in this study,showing considerable environmental benefits.At the same time,the use of advanced production technologies could also improve environmental benefits,and the environmental impact of the global warming category could be reduced by 4.1%via using CO_(2) capture and purification technology.The Chinese database of HFC-134a production established in this study provides convenience for the relevant study of scholars.For the production of HFC-134a,this study helps to better identify the specific environmental hotspots and proposes useful ways to improve the environmental benefits. 展开更多
关键词 HFC-134A Calcium carbide life cycle assessment Environmental impact Carbon capture
下载PDF
Environmental load of solid wood floor production from larch grown at different planting densities based on a life cycle assessment 被引量:1
10
作者 Siying Hu Xin Guan +1 位作者 Minghui Guo Jinman Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1443-1448,共6页
As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we asse... As one of the main structural units in a building,a solid wood floor has significant strategic research value for low-carbon energy saving.Taking the production line of a solid larch wood floor as a case study,we assessed the environmental load during production based upon a life cycle assessment.Using GaBi 6.0 software,we analyzed the associated carbon sequestration during floor production,with the initial planting density serving as the disturbance factor in a modular analysis.The results indicated that the cutting and finishing steps have relatively intense,negative influences on the environment,whereas transportation,ripping,and trimming do not.Additionally,recycling biomass waste has the potential to reduce greenhouse gas emissions.When the initial planting density was 3.0×3.0 m,carbon sequestration was relatively high.Although the emissions of freshwater pollutants,volatile organic compounds,and fine particulate matter(matter with a 2.5-μm diameter) were comparatively high,the reduction of greenhouse gas emissions was still excellent at this planting density. 展开更多
关键词 Environmental effect LARCH life cycle assessment Planting density Solid wood floor
下载PDF
Life cycle assessment of mobile phone housing 被引量:1
11
作者 YANGJian-xin WANGRu-song +1 位作者 FUHao LIUJing-ru 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2004年第1期100-103,共4页
The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and asse... The life cycle assessment of the mobile phone housing in Motorola(China) Electronics Ltd. was carried out, in which materials flows and environmental emissions based on a basic production scheme were analyzed and assessed. In the manufacturing stage, such primary processes as polycarbonate molding and surface painting are included, whereas different surface finishing technologies like normal painting, electroplate, IMD and VDM etc. were assessed. The results showed that housing decoration plays a significant role within the housing life cycle. The most significant environmental impact from housing production is the photochemical ozone formation potential. Environmental impacts of different decoration techniques varied widely, for example, the electroplating technique is more environmentally friendly than VDM. VDM consumes much more energy and raw material. In addition, the results of two alternative scenarios of dematerialization showed that material flow analysis and assessment is very important and valuable in selecting an environmentally friendly process. 展开更多
关键词 life cycle assessment(LCA) housing production DEMATERIALIZATION
下载PDF
Research on life cycle assessment of film-laminated steel packaging 被引量:1
12
作者 LIU Tao LIU Yinghao 《Baosteel Technical Research》 CAS 2020年第2期42-48,共7页
The environmental issues associated with packaging materials have been attracting increasing attention.Life cycle assessment( LCA) is currently the main method used worldwide for evaluating green packaging materials. ... The environmental issues associated with packaging materials have been attracting increasing attention.Life cycle assessment( LCA) is currently the main method used worldwide for evaluating green packaging materials. In this study,the LCA method was used to evaluate the environmental impact of Baosteel’s newly developed process for manufacturing film-laminated steel packaging materials,from raw material mining,production,and processing to their storage,consumption,recycling,and final disposal. The environmental performance and main influencing factors were analyzed and compared. In addition,the life cycle environmental characteristics of film-laminated steel cans,tin-plated steel cans,and aluminum cans were compared. Of the main environmental indicators of the life cycle of the film-laminated steel can,the environmental load of the substrate accounts for the largest proportion,follow ed by electricity. The environmental impact of the production of film materials cannot be ignored. The overall environmental performance of film-laminated steel cans is better than that of aluminum cans. 展开更多
关键词 green packaging life cycle assessment film-laminated steel cans tin-plated steel cans aluminum cans
下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
13
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
Life cycle assessment of opencast lignite mining
14
作者 Lukasz Lelek Joanna Kulczycka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1272-1287,共16页
The life cycle phase of fossil fuel extraction is mainly considered in the life cycle assessment(LCA)when evaluating the energy production processes.It is then only one of many unit processes,which contribute to the b... The life cycle phase of fossil fuel extraction is mainly considered in the life cycle assessment(LCA)when evaluating the energy production processes.It is then only one of many unit processes,which contribute to the blurring of mining-relevant results.There are few items in the literature focusing exclusively on the lignite mining phase and analysing the specific mining conditions and associated environmental impacts.The article focuses on the LCA of lignite mining processes on the basis of data coming from a Polish mine.The technology for opencast lignite mining is noted for its high production efficiency,high level of recovery and lower risk as regards the safety of workers when compared with underground mining systems.However,the need to remove large amounts of overburden to uncover the deposit contributes to a much greater degradation of the landscape.Analysing the results obtained,several key(hot spot)elements of the lignite mining operations were distinguished for modelling the environmental impact,i.e.:calorific value,the amount of electricity consumption,the manner in which waste and overburden are managed.As a result there is a high sensitivity of the final indicator to changes in these impacts. 展开更多
关键词 life cycle assessment(LCA) LIGNITE MINING Fossil fuel
下载PDF
Life cycle assessment for the "implicit" environmental impact of construction projects
15
作者 Xiao-gen Shuai1,2,Hui-qiang Li1,2,Li Tang1,31. School of Civil Engineering and Mechanics,Huazhong University of Science & Technology,Wuhan 430074 2. Hubei Key Laboratory of Control Structure,Huazhong University of Science & Technology,Wuhan 430074,China 3. Bartlett School of Graduate Study,University College London,London WC1E 6BT,UK. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第3期167-171,共5页
The paper has established an assessment system and a quantitative calculation method of the 'implicit' environmental impact including environmental impact indicator,resources consumption indicator and energy c... The paper has established an assessment system and a quantitative calculation method of the 'implicit' environmental impact including environmental impact indicator,resources consumption indicator and energy consumption indicator. The quantitative calculation of the environmental impact indicator is based on the life cycle assessment system and the evaluation software BEES. The paper identifies normalization reference values and weights for 12 categories of the environmental impact. It also analyzes the environmental impact indicator in life cycle stages,raw materials,transportation,manufacturing,utilization,and end of life. A university refectory project is studied. The result has shown that human health,global warming and acidification are the first three environmental impacts in 12 categories. The environmental impact indicator per m2 of this project is 18.448×10-2 standard human equivalent weight. Moreover,97.3% of the total environmental impact occurs at the raw material stage,in which the most severe environmental impact is cancerous health effect; the global warming is the main impact at the transportation and manufacturing stages; the indoor air quality impact is at the usage stage. 展开更多
关键词 life cycle assessment environmental impact implicit environmental impact BEES software
下载PDF
Life cycle assessment for municipal solid waste treatment and utilization
16
作者 Xu, Cheng Yang, Jian-Xin Wang, Ru-Song 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2000年第2期100-106,共7页
Using the method of life cycle assessment (LCA), the paper studies systematically on municipal solid waste incineration and ecological engineering treatment in Guanghan City. The results showed that the environmental... Using the method of life cycle assessment (LCA), the paper studies systematically on municipal solid waste incineration and ecological engineering treatment in Guanghan City. The results showed that the environmental impact potentials of incineration and ecological engineering treatment is 4\^89×10 -2 and 1\^23×10 -2 respectively ; the net energy consumption is -3\^44×10 2 MJ/ton and -2\^90×10 1 MJ/ton, respectively; the net treatment cost is 84.76 RMB Yuan/ton and 32\^52 RMB Yuan/ton, respectively. Comparing with sole incineration, ecological engineering integrates the advantages of incineration and composing, which not only can reduce the amount of waste for incineration and decrease the second environmental pollution, but also can produce high quality compound fertilizer by adding certain amount of chemical fertilizer into compost. It is proved that ecological engineering treatment is an environmental sustainable and economic afforadably method. 展开更多
关键词 municipal solid waste ecological engineering life cycle assessment CLC number: X705 Document code: A
下载PDF
Study on life cycle assessment of stainless steel
17
作者 LI Jie 《Baosteel Technical Research》 CAS 2016年第3期7-14,共8页
In recent years, life cycle assessment (LCA) method is widely used in green manufacturing, energy saving, and emission reduction of iron and steel production. Based on the carbon steel LCA research and relevant stan... In recent years, life cycle assessment (LCA) method is widely used in green manufacturing, energy saving, and emission reduction of iron and steel production. Based on the carbon steel LCA research and relevant standards at home and abroad,the application of LCA in stainless steel in Baosteel was studied. Through the study of stainless steel' s goal and scope, life cycle inventory, LCA and interpretation, knowledge and experience of LCA's application in stainless steel was obtained. 展开更多
关键词 life cycle assessment LCA model stainless steel
下载PDF
An Environmental Learning Support System Incorporating the Life Cycle Concept
18
作者 Akira Shirato Kayoko Yamamoto 《Journal of Environmental Protection》 2020年第6期491-508,共18页
The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made... The need for environmental education, which incorporates the life cycle concept into the learning program, will become increasingly greater all over the world. In the present study, an e-learning system, which is made up of 3 parts including text-based learning materials, quizzes to review the content of the learning materials and CO<sub>2</sub> emission simulation, was designed and developed with the purpose of supporting environmental learning. Targeting a wide range of people, the operation period of this system was 1 month. Based on the results of questionnaire survey for users, it was evident that the quiz function and the simulation function of CO<sub>2</sub> emission contributed to the efficiency in environmental learning, and the format of the e-learning system was effective and helpful for environmental learning. Additionally, with the users’ awareness related to environmental conservation before and after using the system, significant changes in awareness were seen in areas such as behavioral intention, sense of urgency and sense of connection. Furthermore, as it was revealed that 62% of the total access numbers were from mobile devices, it was effective to prepare an interface optimized for mobile devices enabling users to use the system from their smartphones and tablet PCs. 展开更多
关键词 Environmental Learning life cycle assessment (LCA) life cycle Concept Environmental Education Sustainable Development Goals (SDGs) E-Learning system
下载PDF
Life Cycle Assessment of Household Water Tanks—A Study of LLDPE, Mild Steel and RCC Tanks
19
作者 Kunal N. Shah Nanik S. Varandani Monika Panchani 《Journal of Environmental Protection》 2016年第5期760-769,共10页
A case of household water tanks, 1000 L capacity, made of RCC, LLDPE and mild steel (stainless steel) was evaluated for life cycle analysis. The scope of the research comprised of the raw materials, energy inputs and ... A case of household water tanks, 1000 L capacity, made of RCC, LLDPE and mild steel (stainless steel) was evaluated for life cycle analysis. The scope of the research comprised of the raw materials, energy inputs and corresponding emissions during all phases of product making such as extraction of raw material, it’s processing, followed by manufacturing and transport, as well as use and reuse of the product. Simapro 8 (System for Integrated environMental Assessment of PROducts), a modelling software, from Dutch PRé Consultants was used to conduct the life cycle analysis. Simapro 8 enables systematic and transparent modelling and analysis of complex life cycles based on the recommendations of the ISO 14040 series of standards. In the present study the most common method which is acceptable worldwide “Recipe Endpoint method” (ReCiPe) was employed. ReCiPe computes the impact categories and classifies them into two classes based on relevant arrays of characterization factors. Simapro addresses impact categories viz. ozone depletion, human toxicity, ionizing radiation, photochemical oxidant formation, particulate matter formation, terrestrial acidification, climate change, terrestrial ecotoxicity, agricultural land occupation, urban land occupation, natural land transformation, marine ecotoxicity, marine eutrophication, fresh water eutrophication, fresh water ecotoxicity, fossil fuel depletion, minerals depletion, fresh water depletion at the midpoint level. While at the Endpoint level, the impact categories are multiplied by corresponding damage factors and integrated to be represented as three Endpoint level categories, viz. human health, ecosystems and resource depletion. The three endpoint categories are normalized, weighted, and aggregated into a single score. LCA studies indicate that household water tanks of LLDPE have least environmental implications considering impacts on human health, ecosystems and resource depletion as compared to its counterparts viz. Household water tanks made up of mild steel and RCC. The sequence of the material with decreasing impacts is concrete tanks > mild steel tank > LLDPE tanks. The overall assessment is centred on the elements such as material inputs, energy inputs and environmental emissions. 展开更多
关键词 life cycle assessment Water Tanks Linear Low-Density Polyethylene (LLDPE) RCC Mild Steel Recipe Endpoint Method
下载PDF
Life-Cycle Impact Assessment of Air Emissions from a Cement Production Plant in Cambodia
20
作者 Chanto Chea Pinnara Ket +6 位作者 Long Taing Sela Kong Dalin Um Chanreaksmey Taing Chanmoly Or Srean Aun Leakhena Hang 《Open Journal of Air Pollution》 CAS 2022年第4期85-99,共15页
Cement industrial emissions account for 32% of air pollution in Cambodia. With that in mind, we examined the environmental impact of Cambodia’s cement industry and identified ways that it could reduce air pollution. ... Cement industrial emissions account for 32% of air pollution in Cambodia. With that in mind, we examined the environmental impact of Cambodia’s cement industry and identified ways that it could reduce air pollution. The study focused on raw material extraction and preparation, calcination, and cement preparation. Data for the life-cycle inventory were provided by the Kampot Cement Plant. Air emissions were assessed using EMEP/EEA and IPCC criteria, and the impact assessment used ReCiPe (2016). The baseline analysis revealed that calcination contributed the most air pollutants, so mitigation scenarios focused on alternative fuels only during the calcination stage of cement production: 1) 100% coal (S1);2) 93% coal and 7% biomass (S2);3) 85% coal and 15% biomass (S3);4) 70% coal and 30% biomass (S4);and 5) 50% coal and 50% biomass (S5). The results demonstrated that certain mitigation measures reduced major emissions and environmental damage. S5 had the best results, reducing CO<sub>2</sub> by 49.97, NOx by 2.233, and SO<sub>2</sub> by 49.333%;however, it increased PM<sub>2.5</sub> by 19.60% and total heavy metal (Pb, Cd, Hg, As, Cr, Cu, Ni, Se, Zn) output by 28.113%. The results of the study showed reductions in serious health and environmental effects associated with climate change of 48.83%, ozone generation of 9.62%, and particulate matter formation of 28.80%. However, carcinogenic and non-carcinogenic human toxicity increased by 35.66%. Therefore, such mitigation effect would be benefit to carbon reduction target in Cambodia. 展开更多
关键词 Biomass CEMENT CLINKER Environmental Impacts European Monitoring and Evaluation Program life cycle Impact assessment Midpoint Impact Endpoint Impact
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部