With the advent of the fourth industrial revolution,the construction industry has undergone a paradigm shift.The smart construction technology market is expected to grow 12%annually in developed countries due to advan...With the advent of the fourth industrial revolution,the construction industry has undergone a paradigm shift.The smart construction technology market is expected to grow 12%annually in developed countries due to advanced technology investments.It is expected that businesses requiring highly sophisticated technology,for instance companies that need their old facilities upgraded,will become the main focus of the market.As building information modeling(BIM)design is becoming mandatory,such as in the Korea Public Procurement Service,researches regarding building automation,construction,and operation integration management systems based on BIM are conducted.In addition,for construction projects of over 10 billion won,design value engineering(Design VE)implementation,including life cycle cost(LCC)analysis,is mandatory at the design stage to improve quality and reduce the lifetime costs of buildings.In this study,we propose an improvement plan for LCC analysis at the design stage using the KBIMS library,which is an open BIM library developed by the Korean government and research groups.We analyze the existing LCC method,KBIMS library,and attribute information,and model the process that is applied in the LCC analysis system.This is expected to complement the LCC analysis system and improve work productivity.展开更多
LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or ...LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.展开更多
Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design...Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.展开更多
The environmental and energy problems that have arisen in Turkey because of the dramatically increase in energy consumption require the implementation of energy efficiency and microgeneration measures in the building ...The environmental and energy problems that have arisen in Turkey because of the dramatically increase in energy consumption require the implementation of energy efficiency and microgeneration measures in the building sector which is the main sector of primary energy consumption. Since Turkey is highly dependent on exported energy resources, the basic energy policy approach is based on providing the supply security. In this regard, supporting for in situ energy production, encouraging the use of renewable energy sources and the systems such as microgeneration systems in order to meet the energy requirements of buildings would be considered as a key measure for resolving the energy related challenges of Turkey and dealing with the sustainability issues. Turkey’s geographical location has several advantages for extensive use of most of the renewable energy sources such as especially solar energy. However, this huge solar energy potential is not being used sufficiently in residential building sector which is responsible for the great energy consumption of Turkey. Therefore, this paper aims to introduce a study which investigates, on a life cycle basis, the environmental and the economic sustainability of solar Photovoltaic (PV) microgenerators to promote the implementation of this system as an option for the renovation of existing residential buildings in Turkey. In this study, main parameters which were related to the distribution of modules to be installed in flat roofs and facades and the evaluation of the PV systems were taken into account. The effect of these parameters on energy generation of PV systems was analyzed in a case study considering different climate zones of Turkey;and the decrease in the existing energy consumption of the reference building was calculated.展开更多
This paper presents a conceptual framework of integrated waste management which focuses on all stages of product life cycle. A mechanism of resource recovery motivating from waste in economic system (designers, produ...This paper presents a conceptual framework of integrated waste management which focuses on all stages of product life cycle. A mechanism of resource recovery motivating from waste in economic system (designers, producers, consumers, stakeholders in the field of disposal of the product) is suggested. The classification of institutional and economic instruments in the field of waste management as recoverable resources is developed. The author has proposed a scientific and methodical approach to the formation of an integrated waste management as recoverable resources, which is based on a set of methods of economic incentives at all stages of product life cycle and ensures the maximum possible and the environmentally safe management of wastes containing valuable resource components.展开更多
Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions an...Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation.展开更多
Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post yielding damage strongly suggest the need for proper consideration in design rather than just life loss ...Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave induced structural damage. Here, the development of a methodology for determining optimal, cost effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life cycle cost function, structural damage modeling, and reliability analysis.展开更多
The sustainable design approach presented in this paper supports an increased commitment to environmental stewardship and conservation, and results in an optimal balance of cost, environmental, societal, and human ben...The sustainable design approach presented in this paper supports an increased commitment to environmental stewardship and conservation, and results in an optimal balance of cost, environmental, societal, and human benefits while meeting the mission and function of the intended space structure. The aim of this paper is to develop the guidelines that could be applied in the design of a space structure in order to achieve the optimal overall lifetime performance of the space structure. Space structures are more than inanimate hunks of metal, glass and fabric. Every space structure that we design as structural engineers is like a child - a child that is conceived with a passionate vision of its form, structure and purpose; nurtured through the schematic design phase and the development of construction documents; and cared for during the labor pains of plan check corrections, requests for information, shop drawing review, and construction observation. Like children, our space structures mature, perform necessary functions during their lives, and eventually, grow old and die. The design of a sustainable space structure is a much more challenging and cross-disciplinary process than in the past and therefore it is necessary that the space structure is viewed as an integrated system and that all members of the design team work in a fully integrated fashion.展开更多
A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on s...A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine.展开更多
文摘With the advent of the fourth industrial revolution,the construction industry has undergone a paradigm shift.The smart construction technology market is expected to grow 12%annually in developed countries due to advanced technology investments.It is expected that businesses requiring highly sophisticated technology,for instance companies that need their old facilities upgraded,will become the main focus of the market.As building information modeling(BIM)design is becoming mandatory,such as in the Korea Public Procurement Service,researches regarding building automation,construction,and operation integration management systems based on BIM are conducted.In addition,for construction projects of over 10 billion won,design value engineering(Design VE)implementation,including life cycle cost(LCC)analysis,is mandatory at the design stage to improve quality and reduce the lifetime costs of buildings.In this study,we propose an improvement plan for LCC analysis at the design stage using the KBIMS library,which is an open BIM library developed by the Korean government and research groups.We analyze the existing LCC method,KBIMS library,and attribute information,and model the process that is applied in the LCC analysis system.This is expected to complement the LCC analysis system and improve work productivity.
文摘LCM (life cycle management) is a systematic approach, mindset and culture that considers economic, social, and environmental factors among other factors in the decision making process throughout various business or organizational decisions that affect both inputs and outputs of a product or service life cycle. It is a product, process, or activity management system aimed at minimizing environmental and socio-economic burdens associated with an organization's product or process during its entire life cycle and value chain. LCM's application is gaining wider acceptance both in the corporate and governmental organizations as an approach to reduce ecological footprints and to improve the sustainability of human activities. But where and how can it be used in agricultural engineering applications? This study highlights the potential areas of LCM application in agricultural and allied sectors and how it can be utilized. The study revealed that LCM tools such as design for environment and life cycle analysis can be used to evaluate the environmental impacts of-and to improve the products, equipment, and structures produced by biosystems engineers as well as the processes used to generate them.
文摘Based on the consideration of operation environment and structural property, an optimum design model of offshore jacket platform is developed in this paper, namely, the reliability-based full-life cycle optimum design model. In this model, the time-dependent reliability assessment method for structural members is established by combination of the decrease of sectional size and performance deterioration of material. The initial investment, maintenance cost and failure loss cost are assembled into the model. The total cost of the platform structure system in its full service period is chosen as the objective function, and the initial reliabilities of the layer elements partitioned in advance are taken as the design variables. Different models are obtained, depending on whether the system reliability constraint is considered or not. This optimum design model can result in the lowest full-life cost and the optimal initial layer reliability of an offshore jacket platform in the design of marine structures. The feasibility of this model is illustrated with an actual jacket platform in the Liaodong Gulf as an example.
文摘The environmental and energy problems that have arisen in Turkey because of the dramatically increase in energy consumption require the implementation of energy efficiency and microgeneration measures in the building sector which is the main sector of primary energy consumption. Since Turkey is highly dependent on exported energy resources, the basic energy policy approach is based on providing the supply security. In this regard, supporting for in situ energy production, encouraging the use of renewable energy sources and the systems such as microgeneration systems in order to meet the energy requirements of buildings would be considered as a key measure for resolving the energy related challenges of Turkey and dealing with the sustainability issues. Turkey’s geographical location has several advantages for extensive use of most of the renewable energy sources such as especially solar energy. However, this huge solar energy potential is not being used sufficiently in residential building sector which is responsible for the great energy consumption of Turkey. Therefore, this paper aims to introduce a study which investigates, on a life cycle basis, the environmental and the economic sustainability of solar Photovoltaic (PV) microgenerators to promote the implementation of this system as an option for the renovation of existing residential buildings in Turkey. In this study, main parameters which were related to the distribution of modules to be installed in flat roofs and facades and the evaluation of the PV systems were taken into account. The effect of these parameters on energy generation of PV systems was analyzed in a case study considering different climate zones of Turkey;and the decrease in the existing energy consumption of the reference building was calculated.
文摘This paper presents a conceptual framework of integrated waste management which focuses on all stages of product life cycle. A mechanism of resource recovery motivating from waste in economic system (designers, producers, consumers, stakeholders in the field of disposal of the product) is suggested. The classification of institutional and economic instruments in the field of waste management as recoverable resources is developed. The author has proposed a scientific and methodical approach to the formation of an integrated waste management as recoverable resources, which is based on a set of methods of economic incentives at all stages of product life cycle and ensures the maximum possible and the environmentally safe management of wastes containing valuable resource components.
基金The Key Project of National Natural Science Foun-dation of China (No50538070)
文摘Durability zonation standard (DZS) is proposed to provide useful parameters for durable concrete structure design. It deals not only with the influence of environment on structures, but also with types, functions and importance of structures based on the theory of life cycle cost(LCC). First, the basic concept of DZS for concrete structure design is defined. Then the basic principles for DZS are established. The factors for zonation according to natural environmental conditions and structural importance are identified. The usefulness of DZS by citing a real application for concrete highway bridges in Zhejiang Province is demonstrated. Finally, durability regulations are provided accordingly to zonation.
文摘Costs and losses induced by possible future extreme environmental conditions and difficulties in repairing post yielding damage strongly suggest the need for proper consideration in design rather than just life loss prevention. This can be addressed through the development of design methodology that balances the initial cost of the very large floating structure (VLFS) against the expected potential losses resulting from future extreme wave induced structural damage. Here, the development of a methodology for determining optimal, cost effective design will be presented and applied to a VLFS located in the Tokyo bay. Optimal design criteria are determined based on the total expected life cycle cost and acceptable damage probability and curvature of the structure, and a set of sizes of the structure are obtained. The methodology and applications require expressions of the initial cost and the expected life cycle damage cost as functions of the optimal design variables. This study includes the methodology, total life cycle cost function, structural damage modeling, and reliability analysis.
文摘The sustainable design approach presented in this paper supports an increased commitment to environmental stewardship and conservation, and results in an optimal balance of cost, environmental, societal, and human benefits while meeting the mission and function of the intended space structure. The aim of this paper is to develop the guidelines that could be applied in the design of a space structure in order to achieve the optimal overall lifetime performance of the space structure. Space structures are more than inanimate hunks of metal, glass and fabric. Every space structure that we design as structural engineers is like a child - a child that is conceived with a passionate vision of its form, structure and purpose; nurtured through the schematic design phase and the development of construction documents; and cared for during the labor pains of plan check corrections, requests for information, shop drawing review, and construction observation. Like children, our space structures mature, perform necessary functions during their lives, and eventually, grow old and die. The design of a sustainable space structure is a much more challenging and cross-disciplinary process than in the past and therefore it is necessary that the space structure is viewed as an integrated system and that all members of the design team work in a fully integrated fashion.
文摘A compressive design and analysis of a turbofan engine is presented in this paper. The components of jet engine have been analyzed based on mechanical design concept. An attempt has been to select materials based on sustainability and green design considerations. The energy content (e) of the materials has been one of the parameters for material selection. The choice of material has a substantial impact on cost, manuthcturing process, and the life cycle efficiency. All components nose cone, fan blade, inlet shaft, including compressor has been solid modeled using Siemens NX 11.0 CAD software. The finite element analysis of every component was performed and found safe. A tolerance analysis was performed before assembly of the turbofan engine. A numerical analysis was completed on blade and inlet geometries to determine a more efficient turbofan engine. Thermal analysis was executed oi1 the cone and suitable corrections were made. Finally, the cost and the total energy were estimated to show how much energy is needed to manufacture a turbofan jet engine.