The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle parti...The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.展开更多
With the improvement of the national economic level,the number of vehicles is still increasing year by year.According to the statistics of National Bureau of Statics,the number is approximately up to 327 million in Ch...With the improvement of the national economic level,the number of vehicles is still increasing year by year.According to the statistics of National Bureau of Statics,the number is approximately up to 327 million in China by the end of 2018,which makes urban traffic pressure continues to rise so that the negative impact of urban traffic order is growing.Illegal parking-the common problem in the field of transportation security is urgent to be solved and traditional methods to address it are mainly based on ground loop and manual supervision,which may miss detection and cost much manpower.Due to the rapidly developing deep learning sweeping the world in recent years,object detection methods relying on background segmentation cannot meet the requirements of complex and various scenes on speed and precision.Thus,an improved Single Shot MultiBox Detector(SSD)based on deep learning is proposed in our study,we introduce attention mechanism by spatial transformer module which gives neural networks the ability to actively spatially transform feature maps and add contextual information transmission in specified layer.Finally,we found out the best connection layer in the detection model by repeated experiments especially for small objects and increased the precision by 1.5%than the baseline SSD without extra training cost.Meanwhile,we designed an illegal parking vehicle detection method by the improved SSD,reaching a high precision up to 97.3%and achieving a speed of 40FPS,superior to most of vehicle detection methods,will make contributions to relieving the negative impact of illegal parking.展开更多
Science and Technology Park, which plays a very important role in promoting rapid development of regional economy, has enjoyed various preferential policies in its unique development since China’s reform and opening ...Science and Technology Park, which plays a very important role in promoting rapid development of regional economy, has enjoyed various preferential policies in its unique development since China’s reform and opening up, which oppositely shows that the government has overlooked development outside the park and resulted in negative competition between the science and technology park and surrounding areas in resources and industry development, etc. Therefore, it is necessary and urgent to overcome the existing obstacles against coordinative development between the park and surrounding areas, to explore paths where the two can development coordinately and to achieve new breakthrough and innovation in coordinative development in subject, object, platform and mechanism.展开更多
为有效提高碳排放配额分配的合理性,并且避免年度结算时碳排放量超标导致环境污染加剧问题,提出基于奖惩因子的季节性碳交易机制,以园区综合能源系统(park integrated energy system,PIES)为对象进行低碳经济调度。首先,构建包含能量层...为有效提高碳排放配额分配的合理性,并且避免年度结算时碳排放量超标导致环境污染加剧问题,提出基于奖惩因子的季节性碳交易机制,以园区综合能源系统(park integrated energy system,PIES)为对象进行低碳经济调度。首先,构建包含能量层–碳流层–管理层的综合能源系统(integrated energy system,IES)运行框架,建立电气热多能流供需动态一致性模型;其次,分析系统内“日–季节–年度”碳排放特性,打破传统应用指标法的配额分配方法,采用灰色关联分析法建立碳排放配额分配模型,并基于奖惩阶梯碳价制定季节性碳交易机制;最后,以系统内全寿命周期运行成本及碳交易成本最小为目标,对执行季节性碳交易机制的PIES进行低碳经济调度,分析长时间尺度下季节性储能参与调度的减碳量。搭建IEEE 33节点电网5节点气网7节点热网的PIES,并基于多场景进行算例分析,验证此调度方法能够实现零碳经济运行,保证系统供能可靠性,为建立零碳园区奠定理论基础。展开更多
基金supported in part by the Natural Science Foundation of Shandong Province of China(ZR202103040180)the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-004the Fundamental Research Funds for the Central Universities under Grant 20CX05019A.
文摘The recent proliferation of Fifth-Generation(5G)networks and Sixth-Generation(6G)networks has given rise to Vehicular Crowd Sensing(VCS)systems which solve parking collisions by effectively incentivizing vehicle participation.However,instead of being an isolated module,the incentive mechanism usually interacts with other modules.Based on this,we capture this synergy and propose a Collision-free Parking Recommendation(CPR),a novel VCS system framework that integrates an incentive mechanism,a non-cooperative VCS game,and a multi-agent reinforcement learning algorithm,to derive an optimal parking strategy in real time.Specifically,we utilize an LSTM method to predict parking areas roughly for recommendations accurately.Its incentive mechanism is designed to motivate vehicle participation by considering dynamically priced parking tasks and social network effects.In order to cope with stochastic parking collisions,its non-cooperative VCS game further analyzes the uncertain interactions between vehicles in parking decision-making.Then its multi-agent reinforcement learning algorithm models the VCS campaign as a multi-agent Markov decision process that not only derives the optimal collision-free parking strategy for each vehicle independently,but also proves that the optimal parking strategy for each vehicle is Pareto-optimal.Finally,numerical results demonstrate that CPR can accomplish parking tasks at a 99.7%accuracy compared with other baselines,efficiently recommending parking spaces.
基金This research has been supported by NSFC(61672495)Scientific Research Fund of Hunan Provincial Education Department(16A208)+1 种基金Project of Hunan Provincial Science and Technology Department(2017SK2405)in part by the construct program of the key discipline in Hunan Province and the CERNET Innovation Project(NGII20170715).
文摘With the improvement of the national economic level,the number of vehicles is still increasing year by year.According to the statistics of National Bureau of Statics,the number is approximately up to 327 million in China by the end of 2018,which makes urban traffic pressure continues to rise so that the negative impact of urban traffic order is growing.Illegal parking-the common problem in the field of transportation security is urgent to be solved and traditional methods to address it are mainly based on ground loop and manual supervision,which may miss detection and cost much manpower.Due to the rapidly developing deep learning sweeping the world in recent years,object detection methods relying on background segmentation cannot meet the requirements of complex and various scenes on speed and precision.Thus,an improved Single Shot MultiBox Detector(SSD)based on deep learning is proposed in our study,we introduce attention mechanism by spatial transformer module which gives neural networks the ability to actively spatially transform feature maps and add contextual information transmission in specified layer.Finally,we found out the best connection layer in the detection model by repeated experiments especially for small objects and increased the precision by 1.5%than the baseline SSD without extra training cost.Meanwhile,we designed an illegal parking vehicle detection method by the improved SSD,reaching a high precision up to 97.3%and achieving a speed of 40FPS,superior to most of vehicle detection methods,will make contributions to relieving the negative impact of illegal parking.
文摘Science and Technology Park, which plays a very important role in promoting rapid development of regional economy, has enjoyed various preferential policies in its unique development since China’s reform and opening up, which oppositely shows that the government has overlooked development outside the park and resulted in negative competition between the science and technology park and surrounding areas in resources and industry development, etc. Therefore, it is necessary and urgent to overcome the existing obstacles against coordinative development between the park and surrounding areas, to explore paths where the two can development coordinately and to achieve new breakthrough and innovation in coordinative development in subject, object, platform and mechanism.
文摘为有效提高碳排放配额分配的合理性,并且避免年度结算时碳排放量超标导致环境污染加剧问题,提出基于奖惩因子的季节性碳交易机制,以园区综合能源系统(park integrated energy system,PIES)为对象进行低碳经济调度。首先,构建包含能量层–碳流层–管理层的综合能源系统(integrated energy system,IES)运行框架,建立电气热多能流供需动态一致性模型;其次,分析系统内“日–季节–年度”碳排放特性,打破传统应用指标法的配额分配方法,采用灰色关联分析法建立碳排放配额分配模型,并基于奖惩阶梯碳价制定季节性碳交易机制;最后,以系统内全寿命周期运行成本及碳交易成本最小为目标,对执行季节性碳交易机制的PIES进行低碳经济调度,分析长时间尺度下季节性储能参与调度的减碳量。搭建IEEE 33节点电网5节点气网7节点热网的PIES,并基于多场景进行算例分析,验证此调度方法能够实现零碳经济运行,保证系统供能可靠性,为建立零碳园区奠定理论基础。