A high-efficiency propeller can enable a long mission duration for autonomous underwater vehicles(AUVs).In this study,a new method with OpenProp coupled with computational fluid dynamics was developed to design a prop...A high-efficiency propeller can enable a long mission duration for autonomous underwater vehicles(AUVs).In this study,a new method with OpenProp coupled with computational fluid dynamics was developed to design a propeller for an Explorer100 AUV.The towed system simulation of the AUV was used to measure the nominal wake,and a self-propulsion simulation was used to measure the effective wake at the disc plane just in front of a propeller.Two propellers referring to the nominal wake(propeller 1)and effective wake(propeller 2)were designed with OpenProp and appended with the AUV for self-propulsion simulations,respectively.Through the numerical simulation of the AUV self-propulsion tests,the cruising velocity of AUV was obtained.The flow characteristics of the self-propulsion in pressure and velocity contours were also analyzed.The propeller designed with an effective wake improved the thrust,velocity,and efficiency by approximately 11.3%,6.7%,and 2.5%,respectively,as compared with those with a nominal wake.The cruising velocity of the final designed propeller for the Explorer100 AUV improved by 21.8%,as compared to that of the original propeller from the AUV free-running tests.展开更多
An optimal maneuver strategy is proposed for lifting reentry vehicle to reach the maximum lateral range after reentering the atmosphere. Aiming at problems that too many co-state variables and difficulty in estimating...An optimal maneuver strategy is proposed for lifting reentry vehicle to reach the maximum lateral range after reentering the atmosphere. Aiming at problems that too many co-state variables and difficulty in estimating the initial values of co-state variables,the equilibrium glide condition (EGC) is utilized to reduce the reentry motion equations and then the optimal maneuver strategy satisfied above performance index is derived. This maneuvering strategy is applied to the lifting reentry weapon platform CAV which was designed by America recently to realize both longitudinal and lateral trajectory design by controlling the attack angle and the bank angle respectively. The simulation result indicates that the maneuver strategy proposed enables CAV to reach favorable longitudinal range and lateral range.展开更多
The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle...The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.展开更多
A skip entry guidance algorithm blending numerical predictor-corrector and nominal trajectory tracking is presented for lunar return vehicles.The guidance is decoupled into longitudinal and lateral channels.A piecewis...A skip entry guidance algorithm blending numerical predictor-corrector and nominal trajectory tracking is presented for lunar return vehicles.The guidance is decoupled into longitudinal and lateral channels.A piecewise bank-vs-energy magnitude profile and a sign profile are adopted in the skip phase.A magnitude parameter is used to adjust the predicted downrange,and a pseudo-crossrange at the beginning of the final phase is selected as the lateral control variable.Prediction biases of both channels are nullified by a false position iteration algorithm.An on-line estimation and modeling method is introduced to compensate for aerodynamic and atmospheric uncertainties.A nominal trajectory for the final phase is generated based on actual reenter conditions,and the obtained nominal trajectory is tracked by a linear feedback law.A lateral corridor is used to manage the lateral state.The proposed guidance algorithm is assessed using three-degree-of-freedom Monte Carlo analyses,and the results show a satisfactory and robust performance under highly stressful dispersions.展开更多
A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decou...A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.展开更多
Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of t...Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of the previous research has been about pitching and plunging motion of the FWAV. With pitching and flapping motion of FMAV, people usually study it by experiment, and little work has been done by numerical calculation. In this paper, three-dimension unsteady vortex lattice method is applied to study the lift and thrust of FWAV with pitching and flapping motion. The results show that: 1) Lift is mainly produced during down stroke, however, thrust is produced during both down stroke and upstroke. The lift and thrust produced during down stroke are much more than that produced during upstroke. 2) Lift and thrust increase with the increase of flapping frequency;3) Thrust increases with the increase of flapping amplitude, but the lift decreases with the increase of flapping amplitude;4) Lift and thrust increase with the increase of mean pitching angle, but the effect on lift is much more than on thrust. This research is helpful to understand the flight mechanism of birds, thus improving the design of FWAV simulating birds.展开更多
A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted ...A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted operations have remarkable effects on the flow pattern of the full flow path. When the inlet operates in a started mode, the transverse pressure gradient generated by the forebody alters the air captured characteristics and the entering flow quality of the inlet. Furthermore, the expansion process of the nozzle jet flow is obviously affected by the external flow field around the afterbody with the cross section shape transiting from a near rectangle at the exit of the nozzle to a near triangle at the tail of the vehicle. When the inlet operates in an unstarted mode, the aerodynamic instability can be observed in the full flow path of the vehicle. Due to the oscillation of the external compressed shock wave and nozzle jet flow, the aerodynamic characteristics of the vehicle vary periodically with the lift-drag ratio changing from 0.25 to 2.09. Finally, by comparing to the experimental data, the reliability of the CFD is verified.展开更多
One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of thes...One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.展开更多
基金The National Key Research and Development Program(Grant No.2021YFC2801100)Key-area Research and Development Program of Guangdong Province(Grant No.2020B1111010004)Joint Fund of Science&Technology Department of Liaoning Province,State Key Laboratory of Robotics(Grant No.2020-KF-12-05).
文摘A high-efficiency propeller can enable a long mission duration for autonomous underwater vehicles(AUVs).In this study,a new method with OpenProp coupled with computational fluid dynamics was developed to design a propeller for an Explorer100 AUV.The towed system simulation of the AUV was used to measure the nominal wake,and a self-propulsion simulation was used to measure the effective wake at the disc plane just in front of a propeller.Two propellers referring to the nominal wake(propeller 1)and effective wake(propeller 2)were designed with OpenProp and appended with the AUV for self-propulsion simulations,respectively.Through the numerical simulation of the AUV self-propulsion tests,the cruising velocity of AUV was obtained.The flow characteristics of the self-propulsion in pressure and velocity contours were also analyzed.The propeller designed with an effective wake improved the thrust,velocity,and efficiency by approximately 11.3%,6.7%,and 2.5%,respectively,as compared with those with a nominal wake.The cruising velocity of the final designed propeller for the Explorer100 AUV improved by 21.8%,as compared to that of the original propeller from the AUV free-running tests.
文摘An optimal maneuver strategy is proposed for lifting reentry vehicle to reach the maximum lateral range after reentering the atmosphere. Aiming at problems that too many co-state variables and difficulty in estimating the initial values of co-state variables,the equilibrium glide condition (EGC) is utilized to reduce the reentry motion equations and then the optimal maneuver strategy satisfied above performance index is derived. This maneuvering strategy is applied to the lifting reentry weapon platform CAV which was designed by America recently to realize both longitudinal and lateral trajectory design by controlling the attack angle and the bank angle respectively. The simulation result indicates that the maneuver strategy proposed enables CAV to reach favorable longitudinal range and lateral range.
基金the Chinese Scholarship Council for supporting the research
文摘The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide(HBG) vehicle within the medium and intermediate ranges,and compare its performance with the performances of wing-body and lifting-body vehicles vis-a-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study.Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints.The trajectory optimization problem is modeled as a nonlinear,multiphase,constraint optimal control problem and is solved using a hp-adaptive pseudospectral method.Detail modeling aspects of mass,aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed.It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°,respectively,for maximum down-range performance under the constraint heat rate environment.The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively.The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration.The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.
基金supported by the National Natural Science Foundation of China(61203194)the Innovation Fund of National University of Defense Technology(B100101)
文摘A skip entry guidance algorithm blending numerical predictor-corrector and nominal trajectory tracking is presented for lunar return vehicles.The guidance is decoupled into longitudinal and lateral channels.A piecewise bank-vs-energy magnitude profile and a sign profile are adopted in the skip phase.A magnitude parameter is used to adjust the predicted downrange,and a pseudo-crossrange at the beginning of the final phase is selected as the lateral control variable.Prediction biases of both channels are nullified by a false position iteration algorithm.An on-line estimation and modeling method is introduced to compensate for aerodynamic and atmospheric uncertainties.A nominal trajectory for the final phase is generated based on actual reenter conditions,and the obtained nominal trajectory is tracked by a linear feedback law.A lateral corridor is used to manage the lateral state.The proposed guidance algorithm is assessed using three-degree-of-freedom Monte Carlo analyses,and the results show a satisfactory and robust performance under highly stressful dispersions.
基金Foundation item: Project(2012M521538) supported by China Postdoctoral Science Foundation Project suppolted by Postdoctoral Science Foundation of Central South University
文摘A novel adaptive fault-tolerant control scheme in the differential algebraic framework was proposed for attitude control of a heavy lift launch vehicle (HLLV). By using purely mathematical transformations, the decoupled input-output representations of HLLV were derived, rendering three decoupled second-order systems, i.e., pitch, yaw and roll channels. Based on a new type of numerical differentiator, a differential algebraic observer (DAO) was proposed for estimating the system states and the generalized disturbances, including various disturbances and additive fault torques. Driven by DAOs, three improved proportional-integral- differential (PID) controllers with disturbance compensation were designed for pitch, yaw and roll control. All signals in the closed-loop system were guaranteed to be ultimately uniformly bounded by utilization of Lyapunov's indirect method. The convincing numerical simulations indicate that the proposed control scheme is successful in achieving high performance in the presence of parametric perturbations, external disturbances, noisy corruptions, and actuator faults.
文摘Development of flapping wing aerial vehicle (FWAV) has been of interest in the aerospace community with ongoing research into unsteady and low Reynolds number aerodynamics based on the vortex lattice method. Most of the previous research has been about pitching and plunging motion of the FWAV. With pitching and flapping motion of FMAV, people usually study it by experiment, and little work has been done by numerical calculation. In this paper, three-dimension unsteady vortex lattice method is applied to study the lift and thrust of FWAV with pitching and flapping motion. The results show that: 1) Lift is mainly produced during down stroke, however, thrust is produced during both down stroke and upstroke. The lift and thrust produced during down stroke are much more than that produced during upstroke. 2) Lift and thrust increase with the increase of flapping frequency;3) Thrust increases with the increase of flapping amplitude, but the lift decreases with the increase of flapping amplitude;4) Lift and thrust increase with the increase of mean pitching angle, but the effect on lift is much more than on thrust. This research is helpful to understand the flight mechanism of birds, thus improving the design of FWAV simulating birds.
基金National Nature Science Foundation of China (5060601)
文摘A numerical study has been carried out to investigate the full flow path and aerodynamic characteristics of a hypersonic vehicle at a 7.0 free stream Mach number. Results indicate that the inlet started and unstarted operations have remarkable effects on the flow pattern of the full flow path. When the inlet operates in a started mode, the transverse pressure gradient generated by the forebody alters the air captured characteristics and the entering flow quality of the inlet. Furthermore, the expansion process of the nozzle jet flow is obviously affected by the external flow field around the afterbody with the cross section shape transiting from a near rectangle at the exit of the nozzle to a near triangle at the tail of the vehicle. When the inlet operates in an unstarted mode, the aerodynamic instability can be observed in the full flow path of the vehicle. Due to the oscillation of the external compressed shock wave and nozzle jet flow, the aerodynamic characteristics of the vehicle vary periodically with the lift-drag ratio changing from 0.25 to 2.09. Finally, by comparing to the experimental data, the reliability of the CFD is verified.
文摘One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.