In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are e...In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the...The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。展开更多
With the arrival of the big data era, the modern higher education model has undergone radical changes, and higher requirements have been put forward for the data literacy of college teachers. The paper first analyzes ...With the arrival of the big data era, the modern higher education model has undergone radical changes, and higher requirements have been put forward for the data literacy of college teachers. The paper first analyzes the connotation of teacher data literacy, and then combs through the status quo and dilemmas of teachers’ data literacy ability in applied universities. The paper proposes to enhance the data literacy ability of teachers from the perspective of organizational learning. Through building a digital culture, building a data-driven teaching environment, and constructing an interdisciplinary learning community to further promote the application of the theory and practice of datafication inside and outside the organization, and ultimately improve the quality of teaching.展开更多
The current morphological wavelet technologies utilize a fixed filter or a linear decomposition algorithm, which cannot cope with the sudden changes, such as impulses or edges in a signal effectively. This paper pre- ...The current morphological wavelet technologies utilize a fixed filter or a linear decomposition algorithm, which cannot cope with the sudden changes, such as impulses or edges in a signal effectively. This paper pre- sents a novel signal processing scheme, adaptive morpho- logical update lifting wavelet (AMULW), for rolling element bearing fault detection. In contrast with the widely used morphological wavelet, the filters in AMULW are no longer fixed. Instead, the AMULW adaptively uses a morphological dilation-erosion filter or an average filter as the update lifting filter to modify the approximation signal. Moreover, the nonlinear morphological filter is utilized to substitute the traditional linear filter in AMULW. The effectiveness of the proposed AMULW is evaluated using a simulated vibration signal and experimental vibration sig- nals collected from a bearing test rig. Results show that the proposed method has a superior performance in extracting fault features of defective roiling element bearings.展开更多
The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve...The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness.展开更多
Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation.The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques.In...Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation.The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques.In this study,assuming representative work environment parameters,pipeline lifting operations are investigated numerically.More specifically,a time-domain coupled dynamic analysis method is used to conduct a hydrodynamic analysis under different current velocities and wave heights.The results show that proper operation requires the lifting points are reasonably set in combination with the length of the pipeline and the position of the lifting device on the construction ship.The impact of waves on the pipeline is limited,however lifting operations under strong wind and waves should be avoided as far as possible.展开更多
The cervical headache and vertigo were treated with acupuncture at Fengchi(GB20)and Wangu(GB 12)and lifting,rotating,pulling-manipulation at neck.The total effective ratewas 91.4%.The therapeutic effects of these...The cervical headache and vertigo were treated with acupuncture at Fengchi(GB20)and Wangu(GB 12)and lifting,rotating,pulling-manipulation at neck.The total effective ratewas 91.4%.The therapeutic effects of these two types,malposition type and osteophytosis type,were studied and compared.The results were significantly different in statistics.展开更多
This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high...This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.展开更多
Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic...Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic microchannels.Herein,we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography(PμSL)based 3D printing technique.The circumradius of bionic microchannels(pentagonal,square,triangle,and five-pointed star)can be as small as 100μm with precisely fabricated sharp corners.What's more,those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners.Most significantly,those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters,though the water can only be transported to at most 20 mm for a single bionic microchannel.The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved.Those precisely fabricated,low-cost,various cross-sectional bionic microchannels promise applications as microfluidic chips,long-distance unpowered water transportation,step lifting,mimicked transpiration,and so on.展开更多
A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking...A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.展开更多
To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different ...To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.展开更多
At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting require...At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting requirements.First,the structure of the lifting system is established according to the lifting task,the kinematic model of the system is developed by using the D–H coordinate transformation,and the dynamic model is developed based on rigid-body dynamics and hydrodynamics.Then,the static and dynamic workspace of the lifting system are analyzed,and the solving steps of the workspace are given by using the Monte–Carlo method.The effect of the load mass and the maximum allowable tension of the cable on the workspace is examined by simulation.Results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors affecting the workspace.Findings provide a basis for further research on the optimal design of structural parameters and the determination of safe configurations of the lifting system.展开更多
One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of thes...One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.展开更多
The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of th...The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work.展开更多
基金Ho Chi Minh City University of Technology(HCMUT)Vietnam National University Ho Chi Minh City(VNU-HCM)for supporting this study。
文摘In this paper,two lifting mechanism models with opposing placements,which use the same hydraulic hoist model and have the same angle of 50°,have been developed.The mechanical and hydraulic simulation models are established using MATLAB Simscape to analyze their kinetics and dynamics in the lifting and holding stages.The simulation findings are compared to the analytical calculation results in the steady state,and both methods show good agreement.In the early lifting stage,Model 1 produces greater force and discharges goods in the container faster than Model 2.Meanwhile,Model 2 reaches a higher force and ejects goods from the container cleaner than its counterpart at the end lifting stage.The established simulation models can consider the effects of dynamic loads due to inertial moments and forces generated during the system operation.It is crucial in studying,designing,and optimizing the structure of hydraulic-mechanical systems.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
基金the National Natural Science Foundation of China(No.51965032)the Natural Science Foundation of Gansu Province of China(No.22JR5RA319)+1 种基金the Science and Technology Foundation of Gansu Province of China(No.21YF5WA060)the Excellent Doctoral Student Foundation of Gansu Province of China(No.23JRRA842).
文摘The multi-robot coordinated lifting system is an unconstrained system with a rigid and flexible coupling.The deformation of the flexible rope causes errors in the movement trajectory of the lifting system.Based on the kinematic and dynamic analysis of the lifting system,the elastic catenary mod-el considering the elasticity and mass of the flexible rope is established,and the effect of the deform-ation of the flexible rope on the position and posture of the suspended object is analyzed.According to the deformation of flexible rope,a real-time trajectory compensation method is proposed based on the compensation principle of position and posture.Under the lifting task of the low-speed move-ment,this is compared with that of the system which neglects the deformation of the flexible rope.The trajectoy of the lifting system considering the deformation of flexible rope.The results show that the mass and elasticity of the flexible rope can not be neglected.Meanwhile,the proposed trajectory compensation method can improve the movement accuracy of the lifting system,which verifies the ef-fectiveness of this compensation method.The research results provide the basis for trajectory plan-ning and coordinated control of the lifting system。
文摘With the arrival of the big data era, the modern higher education model has undergone radical changes, and higher requirements have been put forward for the data literacy of college teachers. The paper first analyzes the connotation of teacher data literacy, and then combs through the status quo and dilemmas of teachers’ data literacy ability in applied universities. The paper proposes to enhance the data literacy ability of teachers from the perspective of organizational learning. Through building a digital culture, building a data-driven teaching environment, and constructing an interdisciplinary learning community to further promote the application of the theory and practice of datafication inside and outside the organization, and ultimately improve the quality of teaching.
基金Supported by National Natural Science Foundation of China(51705431,51375078)Natural Sciences and Engineering Research Council of Canada(RGPIN-2015-04897)
文摘The current morphological wavelet technologies utilize a fixed filter or a linear decomposition algorithm, which cannot cope with the sudden changes, such as impulses or edges in a signal effectively. This paper pre- sents a novel signal processing scheme, adaptive morpho- logical update lifting wavelet (AMULW), for rolling element bearing fault detection. In contrast with the widely used morphological wavelet, the filters in AMULW are no longer fixed. Instead, the AMULW adaptively uses a morphological dilation-erosion filter or an average filter as the update lifting filter to modify the approximation signal. Moreover, the nonlinear morphological filter is utilized to substitute the traditional linear filter in AMULW. The effectiveness of the proposed AMULW is evaluated using a simulated vibration signal and experimental vibration sig- nals collected from a bearing test rig. Results show that the proposed method has a superior performance in extracting fault features of defective roiling element bearings.
基金sponsored by the Major Projects of National Science and Technology (2011ZX05056-003)
文摘The underwater installation of marine equipment in deep-water development requires safe lifting and accurate positioning. The heave compensation system is an important technology to ensure normal operation and improve work accuracy. To provide a theoretical basis for the heave compensation system, in this paper, the continuous modeling method is employed to build up a coupled model of deep-water lifting systems in vertical direction. The response characteristics of dynamic movement are investigated. The simulation results show that the resonance problem appears in the process of the whole releasing load, the lifting system generates resonance and the displacement response of the lifting load is maximal when the sinking depth is about 2000 m. This paper also analyzes the main influencing factors on the dynamic response of load including cable stiffness, damping coefficient of the lifting system, mass and added mass of lifting load, among which cable stiffness and damping coefficient of the lifting system have the greatest influence on dynamic response of lifting load when installation load is determined. So the vertical dynamic movement response of the load is reduced by installing a damper on the lifting cable and selecting the appropriate cable stiffness.
基金This study was financially supported by the Program for Scientific Research Start-Up Funds of Guangdong Ocean University(060302072101)Comparative Study,and Optimization of Horizontal Lifting of Subsea Pipeline(2021E05011).
文摘Pipelines are widely used for transporting oil resources in the context of offshore oil exploitation.The pipeline stress-strength analysis is an important stage in related design and ensuing construction techniques.In this study,assuming representative work environment parameters,pipeline lifting operations are investigated numerically.More specifically,a time-domain coupled dynamic analysis method is used to conduct a hydrodynamic analysis under different current velocities and wave heights.The results show that proper operation requires the lifting points are reasonably set in combination with the length of the pipeline and the position of the lifting device on the construction ship.The impact of waves on the pipeline is limited,however lifting operations under strong wind and waves should be avoided as far as possible.
文摘The cervical headache and vertigo were treated with acupuncture at Fengchi(GB20)and Wangu(GB 12)and lifting,rotating,pulling-manipulation at neck.The total effective ratewas 91.4%.The therapeutic effects of these two types,malposition type and osteophytosis type,were studied and compared.The results were significantly different in statistics.
文摘This paper presented a design of an automatic lifting system. It is used for large load powered support and improves the old method wherein powered support lifting depends on manual control. This system applies a high accuracy gear shunt motor to match the flow for 4 lifting cylinders, and also allocates bypass throttles to realize automatic lifting. Through the dis- placement sensor feedback the height deviation among 4 lifting cylinders during the whole lifting process, when the deviation is up to the sitting value, the corresponding bypass throttle is operated immediately to reduce the deviation, so that the moving platform of the powered support would not be stuck. Through real application, it is shown that this system can realize automatic lifting of powered support; the lifting speed is controlled between 5 and 10 mm/s, and the final aligning accuracy is up to 1 mm.
基金supported by the National Natural Science Foundation of China(52006056)the Experiments for Space Exploration Program and the Qian Xuesen Laboratory,China Academy of Space Technology(TKTSPY-2020-01-04)+2 种基金the Key-Area Research and Development Program of Guangdong Province(2020B090923003)partly supported by Natural Science Foundation of Hunan through Grant No.2020JJ3012Natural Research Institute for Family Planning。
文摘Those various cross-sectional vessels in trees transfer water to as high as 100 meters,but the traditional fabrication methods limit the manufacturing of those vessels,resulting in the non-availability of those bionic microchannels.Herein,we fabricate those bionic microchannels with various cross-sections by employing projection micro-stereolithography(PμSL)based 3D printing technique.The circumradius of bionic microchannels(pentagonal,square,triangle,and five-pointed star)can be as small as 100μm with precisely fabricated sharp corners.What's more,those bionic microchannels demonstrate marvelous microfluidic performance with strong precursor effects enabled by their sharp corners.Most significantly,those special properties of our bionic microchannels enable them outstanding step lifting performance to transport water to tens of millimeters,though the water can only be transported to at most 20 mm for a single bionic microchannel.The mimicked transpiration based on the step lifting of water from bionic microchannels is also achieved.Those precisely fabricated,low-cost,various cross-sectional bionic microchannels promise applications as microfluidic chips,long-distance unpowered water transportation,step lifting,mimicked transpiration,and so on.
基金The National Natural Science Foundation of China(No.51308105)
文摘A newnumerical method based on vector form intrinsic finite element(VFIFE) is proposed to simulate the integral lifting process of steel structures. First, in order to verify the validity of the VFIFE method, taking the steel gallery between the integrated building and the attached building of Nanjing M obile Communication Buildings for example, the static analysis was carried out and the corresponding results were compared with the results achieved by the traditional finite element method. Then, according to the characteristics of dynamic construction of steel structure integral lifting, the tension cable element was employed to simulate the behavior of dynamic construction. The VFIFE method avoids the iterative solution of the stiffness matrix and the singularity problems. Therefore, it is simple to simulate the complete process of steel structure lifting construction.Finally, by using the VFIFE, the displacement and internal force time history curves of the steel structures under different lifting speeds are obtained. The results show that the lifting speed has influence on the lifting force, the internal force, and the displacement of the structure. In the case of normal lifting speed, the dynamic magnification factor of 1. 5 is safe and reasonable for practical application.
基金financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2800700)the National Natural Science Foundation of China(Grant Nos.52171330,52101379,52101380,51679053)+2 种基金the Project of Research and Development Plan in Key Areas of Guangdong Province(Grant No.2020B1111010002)the Foundation of Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources(Grant No.MESTA-2021-B010)the Natural Science Foundation of Guangdong Province,China(Grant No.2021A1515012134)。
文摘To find a better way to estimate the lift force induced by an interceptor on a high-speed mono-hull ship,a series of high-speed mono-hull ship models are designed and investigated under different conditions.Different lift forces are obtained by numerical calculations and validated by a model test in a towing tank.The factors that influence the force are the interceptor height,velocity,draft,and deadrise angle.The relationship between each factor and the induced lift force is investigated and obtained.We found that the induced lift mainly depends on the interceptor height and advancing velocity,and is proportional to the square of the interceptor height and velocity.The results also showed that the effects of the draft and deadrise angle are relatively less important,and the relationship between the induced lift and these two factors is generally linear.Based on the results,a formula including the combined effect of all factors used to estimate the lift force induced by the interceptor is developed based on systematic analysis.The proposed formula could be used to estimate the lift force induced by interceptors,especially under high-speed condition.
基金Supported by the National Natural Science Foundation of China under Grant No.51965032the National Natural Science Foundation of Gansu Province of China under Grant No.22JR5RA319+1 种基金the Science and Technology Foundation of Gansu Province of China under Grant No.21YF5WA060the Excellent Doctoral Student Foundation of Gansu Province of China under Grant No.23JRRA842。
文摘At present,the cranes used at sea have several shortcomings in terms of flexibility,efficiency,and safety.Therefore,a floating multi-robot coordinated lifting system is proposed to fulfill the offshore lifting requirements.First,the structure of the lifting system is established according to the lifting task,the kinematic model of the system is developed by using the D–H coordinate transformation,and the dynamic model is developed based on rigid-body dynamics and hydrodynamics.Then,the static and dynamic workspace of the lifting system are analyzed,and the solving steps of the workspace are given by using the Monte–Carlo method.The effect of the load mass and the maximum allowable tension of the cable on the workspace is examined by simulation.Results show that the lifting system has limited carrying capacity and a data reference for selecting the structural parameters by analyzing the factors affecting the workspace.Findings provide a basis for further research on the optimal design of structural parameters and the determination of safe configurations of the lifting system.
文摘One of the crucial and challenging issues for researchers is presenting an appropriate approach to evaluate the aerodynamic characteristics of air cushion vehicles(ACVs)in terms of system design parameters.One of these issues includes introducing a suitable approach to analyze the effect of geometric shapes on the aerodynamic characteristics of ACVs.The main novelty of this paper lies in presenting an innovative method to study the geometric shape effect on air cushion lift force,which has not been investigated thus far.Moreover,this paper introduces a new approximate mathematical formula for calculating the air cushion lift force in terms of parameters,including the air gap,lateral gaps,air inlet velocity,and scaling factor for the first time.Thus,we calculate the aerodynamic lift force applied to nine different shapes of the air cushions used in the ACVs in the present paper through the ANSYS Fluent software.The geometrical shapes studied in this paper are rectangular,square,equilateral triangle,circular,elliptic shapes,and four other combined shapes,including circle-rectangle,circle-square,hexagonal,and fillet square.Results showed that the cushion with a circular pattern produces the highest lift force among other geometric shapes with the same conditions.The increase in the cushion lift force can be attributed to the fillet with a square shape and its increasing radius compared with the square shape.
基金supported by National Key Research and Development Program of China (2020YFA0710902)National Natural Science Foundation of China (12172308)Project of State Key Laboratory of Traction Power (2023TPL-T05).
文摘The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship,and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train.In recent years,under the background of increasing train speed,some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings(aero-wing)installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail.Based on the bidirectional running characteristics of high-speed train,this paper proposes a scheme to apply aero-wings with anteroposterior symmetrical cross-sections on the roof of the train.After the verification of the wind tunnel experimental data,the relatively better airfoil section and extension formof anteroposterior symmetrical aero-wing is selected respectively in this paper,and the aero-wings are fixedly connected to the roof of the train through the mounting column to conduct aerodynamic simulation analysis.The research shows that:compared with the circular-arc and oval crosssections,this paper believes that the crescent cross-section can form greater aerodynamic lift force in a limited space.Considering factors such as aerodynamic parameters,ground effect,and manufacturing process,this paper proposes to adopt aero-wings with arc type extension form and connect them to the roof of the train through mounting columns with shuttle cross-section.When the roof of the train is covered with aero-wings and runs at high speed,the sprung load of the carriages can be effectively reduced.However,there are certain hidden dangers in the tail carriage due to the large amount of lift force,so,the intervention of the aero-wing lifting mechanism is required.At the same time,it is necessary to optimize the overall aerodynamic drag force reduction in the followup work.