Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and ...Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode v. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.展开更多
Based on the idea that a squeezing process can be thought of as a total cumulative effect of a large number of tiny squeezing processes, we define a squeeze-like operator with a time-dependent squeeze parameter. Apply...Based on the idea that a squeezing process can be thought of as a total cumulative effect of a large number of tiny squeezing processes, we define a squeeze-like operator with a time-dependent squeeze parameter. Applying this operator to and combining with a system which includes a two-photon interaction between two atoms and an initial vacuum cavity field, and resorting to a resonant strong driving classical field, we obtain an unconventional geometric phase gate with a shorter gating time.展开更多
A low gate voltage operated multi-emitter-dot gated lateral bipolar junction transistor (BJT) ion sensor is proposed. The proposed device is composed of an arrayed gated lateral BJT, which is driven in the metal-oxi...A low gate voltage operated multi-emitter-dot gated lateral bipolar junction transistor (BJT) ion sensor is proposed. The proposed device is composed of an arrayed gated lateral BJT, which is driven in the metal-oxidesemiconductor field-effect transistor (MOSFET)-BJT hybrid operation mode. Further, it has multiple emitter dots linked to each other in parallel to improve ionic sensitivity. Using hydrogen ionic solutions as reference solutions, we conduct experiments in which we compare the sensitivity and threshold voltage of the multi-emitter-dot gated lateral BJT with that of the single-emitter-dot gated lateral BJT. The multi-emitter-dot gated lateral BJT not only shows increased sensitivity but, more importantly, the proposed device can be operated under very low gate voltage, whereas the conventional ion-sensitive field-effect transistors cannot. This special characteristic is significant for low power devices and for function devices in which the provision of a gate voltage is difficult.展开更多
We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator an...We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator and the squeezed operator can induce the general geometric phase. By means of the displacement operator and the squeezed operator concerning the circuit cavity mode state along a closed path in the phase space, we discuss specifically how to implement a two-qubit geometric phase gate in circuit quantum electrodynamics with both single photon interaction and two-photon interaction between the superconducting qubits and the circuit cavity modes. The experimental feasibility is discussed in detail.展开更多
We derive normally ordered quantum gate operators for continuum variables by mapping classical transforms onto Fock space. Successive gate operations can be treated in a unified way that is using the technique of inte...We derive normally ordered quantum gate operators for continuum variables by mapping classical transforms onto Fock space. Successive gate operations can be treated in a unified way that is using the technique of integration within an ordered product of operators.展开更多
By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb...By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb^(3+)ions as the secondary fluorescent signal and sensing active sites,Tb^(3+)@NiMOF presents great potentials in visually and efficiently monitoring EPI in serum,with high sensitivity and selectivity,fast response,excellent recyclable,and the low detection limit(LOD,3.06 ng/mL).Furthermore,a tandem combinational logic gate based intelligent detection system was constructed to improve the practicability and convenience of epinephrine(EPI)detection in serum by comparing the light emitted colour with the series standard colour cards preset in the smartphone.This work provides a promising approach of developing metal-organic frameworks(MOFs)based self-calibrating sensors for intelligent detection of bioactive molecules.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)the Science Foundation of Yanbian University in China (Grant No 2007-31)
文摘Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode v. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001).
文摘Based on the idea that a squeezing process can be thought of as a total cumulative effect of a large number of tiny squeezing processes, we define a squeeze-like operator with a time-dependent squeeze parameter. Applying this operator to and combining with a system which includes a two-photon interaction between two atoms and an initial vacuum cavity field, and resorting to a resonant strong driving classical field, we obtain an unconventional geometric phase gate with a shorter gating time.
基金Supported by the National Natural Science Foundation of China under Grant No 61403014
文摘A low gate voltage operated multi-emitter-dot gated lateral bipolar junction transistor (BJT) ion sensor is proposed. The proposed device is composed of an arrayed gated lateral BJT, which is driven in the metal-oxidesemiconductor field-effect transistor (MOSFET)-BJT hybrid operation mode. Further, it has multiple emitter dots linked to each other in parallel to improve ionic sensitivity. Using hydrogen ionic solutions as reference solutions, we conduct experiments in which we compare the sensitivity and threshold voltage of the multi-emitter-dot gated lateral BJT with that of the single-emitter-dot gated lateral BJT. The multi-emitter-dot gated lateral BJT not only shows increased sensitivity but, more importantly, the proposed device can be operated under very low gate voltage, whereas the conventional ion-sensitive field-effect transistors cannot. This special characteristic is significant for low power devices and for function devices in which the provision of a gate voltage is difficult.
基金Supported by the National Science Foundation of China under Grant Nos. 11074070, 10774042, and 10774163the Nature Science Foundation of Hunan Province under Grant No. 09JJ3121+1 种基金the Key Project of Science and Technology of Hunan Province under Grant Nos. 2010FJ2005 and 2008FJ4217the NKBRSFC under Grant No. 2010CB922904
文摘We give the brief review on the related definition of the geometric phase independent of specific physical system based on the displacement opreator and the sqeezed operator, then show how the displacement operator and the squeezed operator can induce the general geometric phase. By means of the displacement operator and the squeezed operator concerning the circuit cavity mode state along a closed path in the phase space, we discuss specifically how to implement a two-qubit geometric phase gate in circuit quantum electrodynamics with both single photon interaction and two-photon interaction between the superconducting qubits and the circuit cavity modes. The experimental feasibility is discussed in detail.
文摘We derive normally ordered quantum gate operators for continuum variables by mapping classical transforms onto Fock space. Successive gate operations can be treated in a unified way that is using the technique of integration within an ordered product of operators.
基金Project supported by the National Natural Science Foundation of China(21801230,21905255)Natural Science Foundation of Shanxi Province(202203021211090)+2 种基金Young Academic Leader Supported Program of North University of China(QX201904)Shanxi Key Laboratory of Advanced Carbon Electrode Materials(202104010910019)The Key Laboratory Research Foundation of North University of China。
文摘By anchoring Tb^(3+)ions on its free carboxyl groups of the nanocaged NiMOF,a dual-emission self-calibrating sensor of Tb^(3+)@NiMOF was fabricated through coordination post-synthetic modification(PSM)strategy.With Tb^(3+)ions as the secondary fluorescent signal and sensing active sites,Tb^(3+)@NiMOF presents great potentials in visually and efficiently monitoring EPI in serum,with high sensitivity and selectivity,fast response,excellent recyclable,and the low detection limit(LOD,3.06 ng/mL).Furthermore,a tandem combinational logic gate based intelligent detection system was constructed to improve the practicability and convenience of epinephrine(EPI)detection in serum by comparing the light emitted colour with the series standard colour cards preset in the smartphone.This work provides a promising approach of developing metal-organic frameworks(MOFs)based self-calibrating sensors for intelligent detection of bioactive molecules.