Objective:Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked disorders caused by mutations in the dystrophin gene. The majority of recognized mutations are copy number changes of i...Objective:Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked disorders caused by mutations in the dystrophin gene. The majority of recognized mutations are copy number changes of individual exons. The objective of the present study was to assess the multiplex ligation-dependent probe amplification (MLPA) effects of detection of gene mutations. Methods: Samples of 20 control males and 80 males and their mothers referred to our diagnostic facility on the clinical suspi- cion of DMD or BMD were tested by MLPA and multiplex PCR. Results : The mean DQs for all peak of 20 control male samples was 1.02 (range from 0.83 to 1.21) by MLPA. Deletions or duplications were iden- tified in 6 out of 31 families that had been previously tested as negative by multiplex PCR. One case of complex rearrangement involving a duplication of two regions: dupEX3-9 and dupEX 17-41 were found by MLPA. Conclusions: MLPA is a highly sensitive method and rapid alternative to multiplex PCR for detec- tion of DMD and BMD.展开更多
文摘Objective:Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked disorders caused by mutations in the dystrophin gene. The majority of recognized mutations are copy number changes of individual exons. The objective of the present study was to assess the multiplex ligation-dependent probe amplification (MLPA) effects of detection of gene mutations. Methods: Samples of 20 control males and 80 males and their mothers referred to our diagnostic facility on the clinical suspi- cion of DMD or BMD were tested by MLPA and multiplex PCR. Results : The mean DQs for all peak of 20 control male samples was 1.02 (range from 0.83 to 1.21) by MLPA. Deletions or duplications were iden- tified in 6 out of 31 families that had been previously tested as negative by multiplex PCR. One case of complex rearrangement involving a duplication of two regions: dupEX3-9 and dupEX 17-41 were found by MLPA. Conclusions: MLPA is a highly sensitive method and rapid alternative to multiplex PCR for detec- tion of DMD and BMD.