Using relativistic spin-flavor wave functions of a Lorentz-covariant light cone quark model, we calculate the electromagnetic form factors of two S11 resonances, N(1535) and N(1650), and the helicity amplitudes A1...Using relativistic spin-flavor wave functions of a Lorentz-covariant light cone quark model, we calculate the electromagnetic form factors of two S11 resonances, N(1535) and N(1650), and the helicity amplitudes A1/2 and S1/2 for electroexcitation of the S11 resonances from the nucleon. The electromagnetic form factors of these S11 resonances are found to be similar to those of the nucleon in shape, while the charge form factor of neutral N(1650) is nearly zero. The relative peak height of the S11 charge form factors is controlled by the mixing angle common to both resonance wave functions. As in most quark models, there is a systematic overestimate of A1/2 in both N(1535) and N(1650) cases at the photon point. A sizeable S1/2 for all cases is produced as suggested by experiments.展开更多
In this article, we calculate the contribution from the nonfactorizable soft hadronic matrix element to the decay B^0→Xc1π^0 with the light-cone quantum chromo-dynamic (QCD) sum rules. The numerical results show t...In this article, we calculate the contribution from the nonfactorizable soft hadronic matrix element to the decay B^0→Xc1π^0 with the light-cone quantum chromo-dynamic (QCD) sum rules. The numerical results show that its contribution is rather large and should not be neglected. The total amplitudes lead to a branching fraction which is in agreement with the experimental data marginally.展开更多
If there exists a null gradient field in 3 + 1 dimensional space-time, we can set up a kind of light-cone coordinate system in the space-time. In such coordinate system, the metric takes a simple form, which is helpfu...If there exists a null gradient field in 3 + 1 dimensional space-time, we can set up a kind of light-cone coordinate system in the space-time. In such coordinate system, the metric takes a simple form, which is helpful for simplifying and solving the Einstein’s field equation. This light-cone coordinate system has wonderful properties and has been used widely in astrophysics to calculate parameters. We discuss the structure of space-time with light-cone coordinate system in detail. We show how to construct the light-cone coordinate system and obtain the conditions of its existence, and then explain their geometrical and physical meanings.展开更多
In this study,we assign the tetraquark state for the Y(4230) resonance and investigate the mass and decay constant of Y(4230) in the framework of SVZ sum rules through a different calculation technique.Then,we calcula...In this study,we assign the tetraquark state for the Y(4230) resonance and investigate the mass and decay constant of Y(4230) in the framework of SVZ sum rules through a different calculation technique.Then,we calculate the strong coupling gYJ/ψf0 by considering soft-meson approximation techniques within the framework of light cone sum rules,and we use the strong coupling gYJ/ψf0 to obtain the width of the decay Y(4230)→J/ψf0(980).Our prediction for the mass agrees with the experimental measurement,and that for the decay width of Y(4230)→J/ψf0(980) is within the upper limit.展开更多
The Chern-Simons theory in two-space one-time dimensions is quantized on the light-front under appropriate gauge-fixing conditions using the Hamiltonian, path integral and BRST formulations.
In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on t...In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on the hyperplanes defined by the world- sheet time . In the present work we quantize the same theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time , using the standard constraint quantization techniques in the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac, which is in contrast to the corresponding case of the instant-form theory, where the theory remains unconstrained in the sense of Dirac. The light-front theory is seen to possess a set of twenty six primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.展开更多
Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in the ...Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in the equal world-sheet time framework on the hyperplanes defined by the world- sheet time σ0=τ=constant . The light-front quantization (LFQ) of this theory without a scalar dilaton field has also been studied by us recently. In the present work we study the LFQ of this theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+=τ+σ=constant , using the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac. The light-front theory is seen to possess a set of twenty seven primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.展开更多
Flat, straight sheets of paper, standing vertically on edge cannot support any load placed upon their top edge, but once formed into fractal tube conic sections, they have been measured to support up to 97.52 (± ...Flat, straight sheets of paper, standing vertically on edge cannot support any load placed upon their top edge, but once formed into fractal tube conic sections, they have been measured to support up to 97.52 (± 2.27) kilograms (215 (± 5) pounds) of weight with strength-per-weight ratio up to 10,336 (± 240). So, strength has been discovered to be an emergent characteristic arising solely from addition of intelligent order. It is proposed to impose such intelligent order upon, preferably, at least 6 laser beams by focusing each of them to form cones of light, arranging the cones to form a wall of a larger fractal cone, and converging all of them to a common focal point inside a vacuum chamber to give them sufficient strength near this focal point to attract, hold, and move neutral antimatter, preferably anti-lithium. This opens the new field of structural engineering of light and re-defines the concept of strength. Means of cancelling out radiation pressure by reflection of laser beams back to the common focal point are proposed to enable laser confinement of particles having low polarizability, such as anti-hydrogen. Counter-circulation of light by reflection at grazing incidence is proposed as a means of returning escaping antimatter back to the common focal point containment area. Means are proposed to inject a stream of matter into the contained antimatter to create a matter-antimatter reactor and propulsion engine. Since anti-lithium is not available, yet, means are proposed to test these structures by confining ordinary lithium, instead, and by hitting it with anti-protons and/or positrons. Means are proposed to modulate the matter-antimatter reaction with information to create modulated gravitational waves for communication. The proposed structures would enable efficient, stable, safe confinement of antimatter, which would allow better study of antimatter, and make possible renewable, clean, safe, matter-antimatter reactor generators and propulsion engines, antimatter-assisted fusion reactors, and modulated gravitational wave generators.展开更多
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10075056 and 90103020 and the CAS Knowledge Innovation Project under Grant No. KC2-SW-N02.
文摘Using relativistic spin-flavor wave functions of a Lorentz-covariant light cone quark model, we calculate the electromagnetic form factors of two S11 resonances, N(1535) and N(1650), and the helicity amplitudes A1/2 and S1/2 for electroexcitation of the S11 resonances from the nucleon. The electromagnetic form factors of these S11 resonances are found to be similar to those of the nucleon in shape, while the charge form factor of neutral N(1650) is nearly zero. The relative peak height of the S11 charge form factors is controlled by the mixing angle common to both resonance wave functions. As in most quark models, there is a systematic overestimate of A1/2 in both N(1535) and N(1650) cases at the photon point. A sizeable S1/2 for all cases is produced as suggested by experiments.
基金supported by the National Natural Science Foundation of China (Grant No 10775051)the Program for New Century Excellent Talents in University of China (Grant No NCET-07-0282)
文摘In this article, we calculate the contribution from the nonfactorizable soft hadronic matrix element to the decay B^0→Xc1π^0 with the light-cone quantum chromo-dynamic (QCD) sum rules. The numerical results show that its contribution is rather large and should not be neglected. The total amplitudes lead to a branching fraction which is in agreement with the experimental data marginally.
文摘If there exists a null gradient field in 3 + 1 dimensional space-time, we can set up a kind of light-cone coordinate system in the space-time. In such coordinate system, the metric takes a simple form, which is helpful for simplifying and solving the Einstein’s field equation. This light-cone coordinate system has wonderful properties and has been used widely in astrophysics to calculate parameters. We discuss the structure of space-time with light-cone coordinate system in detail. We show how to construct the light-cone coordinate system and obtain the conditions of its existence, and then explain their geometrical and physical meanings.
基金Hao Sun is supported by the National Natural Science Foundation of China(12075043)。
文摘In this study,we assign the tetraquark state for the Y(4230) resonance and investigate the mass and decay constant of Y(4230) in the framework of SVZ sum rules through a different calculation technique.Then,we calculate the strong coupling gYJ/ψf0 by considering soft-meson approximation techniques within the framework of light cone sum rules,and we use the strong coupling gYJ/ψf0 to obtain the width of the decay Y(4230)→J/ψf0(980).Our prediction for the mass agrees with the experimental measurement,and that for the decay width of Y(4230)→J/ψf0(980) is within the upper limit.
文摘The Chern-Simons theory in two-space one-time dimensions is quantized on the light-front under appropriate gauge-fixing conditions using the Hamiltonian, path integral and BRST formulations.
文摘In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on the hyperplanes defined by the world- sheet time . In the present work we quantize the same theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time , using the standard constraint quantization techniques in the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac, which is in contrast to the corresponding case of the instant-form theory, where the theory remains unconstrained in the sense of Dirac. The light-front theory is seen to possess a set of twenty six primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.
文摘Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in the equal world-sheet time framework on the hyperplanes defined by the world- sheet time σ0=τ=constant . The light-front quantization (LFQ) of this theory without a scalar dilaton field has also been studied by us recently. In the present work we study the LFQ of this theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+=τ+σ=constant , using the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac. The light-front theory is seen to possess a set of twenty seven primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.
文摘非视域成像是对探测器视线外被遮挡的物体进行光学成像的新兴技术,基于光锥变换反演法的非视域成像可以看作是一个反卷积的过程,传统维纳滤波反卷积方法是使用经验值或者反复尝试得到瞬态图像的功率谱密度噪信比(power spectral density noise-to-signal ratio,PSDNSR)进行维纳滤波反卷积,但非视域成像每个隐藏场景的PSDNSR都不同,先验估计难以适用.因此本文提出使用捕获瞬态图像的中频域信息来估计PSDNSR进行维纳滤波从而实现非视域成像.实验表明,基于中频域维纳滤波的非视域成像算法估计的PSDNSR能够落在一个重建效果较好的量级上.相比其他方法,本文算法能一步直接估计出PSDNSR,没有迭代运算,计算复杂度低,能够在保证重建效果的前提下提升重建效率.
文摘Flat, straight sheets of paper, standing vertically on edge cannot support any load placed upon their top edge, but once formed into fractal tube conic sections, they have been measured to support up to 97.52 (± 2.27) kilograms (215 (± 5) pounds) of weight with strength-per-weight ratio up to 10,336 (± 240). So, strength has been discovered to be an emergent characteristic arising solely from addition of intelligent order. It is proposed to impose such intelligent order upon, preferably, at least 6 laser beams by focusing each of them to form cones of light, arranging the cones to form a wall of a larger fractal cone, and converging all of them to a common focal point inside a vacuum chamber to give them sufficient strength near this focal point to attract, hold, and move neutral antimatter, preferably anti-lithium. This opens the new field of structural engineering of light and re-defines the concept of strength. Means of cancelling out radiation pressure by reflection of laser beams back to the common focal point are proposed to enable laser confinement of particles having low polarizability, such as anti-hydrogen. Counter-circulation of light by reflection at grazing incidence is proposed as a means of returning escaping antimatter back to the common focal point containment area. Means are proposed to inject a stream of matter into the contained antimatter to create a matter-antimatter reactor and propulsion engine. Since anti-lithium is not available, yet, means are proposed to test these structures by confining ordinary lithium, instead, and by hitting it with anti-protons and/or positrons. Means are proposed to modulate the matter-antimatter reaction with information to create modulated gravitational waves for communication. The proposed structures would enable efficient, stable, safe confinement of antimatter, which would allow better study of antimatter, and make possible renewable, clean, safe, matter-antimatter reactor generators and propulsion engines, antimatter-assisted fusion reactors, and modulated gravitational wave generators.