Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derive...Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.展开更多
Oxidative dehydrogenation of light alkanes to alkenes is an attractive alternative route for industrial direct dehydrogenation because of favorable thermodynamic and kinetic characteristics,but encounters difficulties...Oxidative dehydrogenation of light alkanes to alkenes is an attractive alternative route for industrial direct dehydrogenation because of favorable thermodynamic and kinetic characteristics,but encounters difficulties in selectivity control for alkenes because of over-oxidation reactions that produce a substantial amount of undesired carbon oxides.Recent progress has revealed that boron nitride is a highly promising catalyst in the oxidative dehydrogenation of light alkanes because of its superior selectivity for and high productivity of light alkenes,negligible formation of CO2,and remarkable catalyst stability.From this viewpoint,recent works on boron nitride in the oxidative dehydrogenations of ethane,propane,butane,and ethylbenzene are reviewed,and the emphasis of this viewpoint is placed on discussing the catalytic origin of boron nitride in oxidative dehydrogenation reactions.After analyzing recent progress in the use of boron nitride for oxidative dehydrogenation reactions and finding much new evidence,we conclude that pure boron nitride is catalytically inert,and an activation period is required under the reaction conditions;this process is accompanied by an oxygen functionalization at the edge of boron nitride;the B-O species themselves have no catalytic activity in C-H cleavage,and the B-OH groups,with the assistance of molecular oxygen,play the key role in triggering the oxidative dehydrogenation of propane;the dissociative adsorption of molecular oxygen is involved in the reaction process;and a straightforward strategy for preparing an active boron nitride catalyst with hydroxyl groups at the edges can efficiently enhance the catalytic efficacy.A new redox reaction cycle based on the B-OH sites is also proposed.Furthermore,as this is a novel catalytic system,there is an urgent need to develop new methods to optimize the catalytic performances,clarify the catalytic function of boron species in the alkane ODH reactions,and disclose the reaction mechanism under realistic reaction conditions.展开更多
The discovery of the high activity and selectivity of boron-based catalysts for oxidative dehydrogenation(ODH)of alkanes to olefins has attracted significant attention in the exploration of a new method for the synthe...The discovery of the high activity and selectivity of boron-based catalysts for oxidative dehydrogenation(ODH)of alkanes to olefins has attracted significant attention in the exploration of a new method for the synthesis of highly active and selective catalysts.Herein,we describe the synthesis of porous boron-doped silica nanofibers(PBSNs)100-150 nm in diameter by electrospinning and the study of their catalytic performance.The electrospinning synthesis of the catalyst ensures the uniform dispersion and stability of the boron species on the open silica fiber framework.The one-dimensional nanofibers with open pore structures not only prevented diffusion limitation but also guaranteed high catalytic activity at high weight hourly space velocity(WHSV)in the ODH of alkanes.Compared to other supported boron oxide catalysts,PBSN catalysts showed higher olefin selectivity and stability.The presence of Si-OH groups in silica-supported boron catalysts may cause low propylene selectivity during the ODH of propane.When the ODH conversion of ethane reached 44.3%,the selectivity and productivity of ethylene were 84%and 44.2%g_(cat)^(-1)s^(-1),respectively.In the case of propane ODH,the conversion,selectivity of olefins,and productivity of propylene are 19.2%,90%,and 76.6 jimol g_(cat)^(-1)s^(-1),respectively.No significant variations in the conversion and product selectivity occurred during 20 h of operation at a high WHSV of 84.6 h^(-1).Transient analysis and kinetic experiments indicated that the activation of O2 was influenced by alkanes during the ODH reaction.展开更多
This review paper aims at analysing the state of the art for partial oxidation and oxidative dehydrogenation(ODH) reactions of lower alkanes C–Cinto olefins and oxygenated products(aldehydes, anhydrides,carboxylic...This review paper aims at analysing the state of the art for partial oxidation and oxidative dehydrogenation(ODH) reactions of lower alkanes C–Cinto olefins and oxygenated products(aldehydes, anhydrides,carboxylic acids) on metal oxide catalysts with cations of variable oxidation state, such as Mo and V in particular. Key parameters to be met by the catalysts, such as their redox properties, their structural aspects, active sites composed of ensembles of atoms isolated one from the others, mechanisms of reactions, are discussed. Main features of the different reactions of C–Calkanes and catalysts are analysed and their generalisation for determining more active and more selective catalysts is attempted. Prospective views for the future of the domain are proposed.展开更多
Alkylamines are important motifs in pharmaceutical and material sciences.The existing reports of C-H amination are limited to ammonia,diazo and azide nitrogen sources.This work describes a rapid construction of C-N bo...Alkylamines are important motifs in pharmaceutical and material sciences.The existing reports of C-H amination are limited to ammonia,diazo and azide nitrogen sources.This work describes a rapid construction of C-N bonds from accessible nitroarene and alkane feedstock under decatungstate catalysis.A variety of C-H precursors including gaseous,linear,cyclic and benzylic hydrocarbons could adopt this protocol to afford the corresponding alkylamines in high efficiency.展开更多
The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundan...The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundant production of maleic anhydride(MA).Vanadium phosphorous oxide(VPO)is the most effective catalyst for selective oxidation of n-butane to MA so far.Interestingly,the VPO complex exists in more or less fifteen different structures,each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state,lattice oxygen,acidity etc.,which relies on precursor preparation method and the activation conditions of catalysts.The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants,or either introducing template or structural-directing agents.Meanwhile,new preparation strategies such as electrospinning,ball milling,hydrothermal,barothermal,ultrasound,microwave irradiation,calcination,sol-gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance.Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield.To analyze the performance of the catalytic precursor,the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction,phosphorus supplement,water supplement,deactivation,and air/n-butane pretreatment etc.related to the various industrial applications of VPO.展开更多
The methanol-to-olefin (MTO) reaction was investigated in a bench-scale, fixed-bed reactor using an extruded catalyst composed of a commercial SAPO-34 (65 weight percentage, wt-%) embedded in an amorphous SiO2 mat...The methanol-to-olefin (MTO) reaction was investigated in a bench-scale, fixed-bed reactor using an extruded catalyst composed of a commercial SAPO-34 (65 weight percentage, wt-%) embedded in an amorphous SiO2 matrix (35 wt-%). The texture properties, acidity and crystal structure of the pure SAPO-34 and its extruded form (E-SAPO-34) were analyzed and the results indicated that the extrusion step did not affect the properties of the catalyst. Subsequently, E-SAPO-34 was tested in a temperature range between 300 and 500 ~C, using an aqueous methanol mixture (80 wt-% water content) fed at a weight hour space velocity (WHSV) of 1.21 h-1. At 300 ~C, a low conversion was observed combined with the catalyst deactivation, which was ascribed to oligomeriza-tion and condensation reactions. The coke analysis showed the presence of diamandoid hydrocarbons, which are known to be inactive molecules in the MTO process. At higher temperatures, a quasi-steady state was reached during a 6 h reaction where the optimal temperature was identified at 450℃, which incidentally led to the lowest coke deposition combined with the highest H/C ratio. Above 450℃, surges of ethylene and methane were associated to a combination of H-transfer and protolytic cracking reactions. Finally, the present work underscored the convenience of the extrusion technique for testing catalysts at simulated scale-up conditions.展开更多
文摘Light olefins are important platform feedstocks in the petrochemical industry,and the ongoing global economic development has driven sustained growth in demand for these compounds.The dehydrogenation of alkanes,derived from shale gas,serves as an alternative olefins production route.Concurrently,the target of realizing carbon neutrality promotes the comprehensive utilization of greenhouse gas.The integrated process of light alkanes dehydrogenation and carbon dioxide reduction(CO_(2)-ODH)can produce light olefins and realize resource utilization of CO_(2),which has gained wide popularity.With the introduction of CO_(2),coke deposition and metal reduction encountered in alkanes dehydrogenation reactions can be effectively suppressed.CO_(2)-assisted alkanes dehydrogenation can also reduce the risk of potential explosion hazard associated with O_(2)-oxidative dehydrogenation reactions.Recent investigations into various metal-based catalysts including mono-and bi-metallic alloys and oxides have displayed promising performances due to their unique properties.This paper provides the comprehensive review and critical analysis of advancements in the CO_(2)-assisted oxidative dehydrogenation of light alkanes(C2-C4)on metal-based catalysts developed in recent years.Moreover,it offers a comparative summary of the structural properties,catalytic activities,and reaction mechanisms over various active sites,providing valuable insights for the future design of dehydrogenation catalysts.
基金supported by State Key Program of the National Natural Science Foundation of China(21733002)the National Natural Science Foundation of China(U1462120,21403027)Cheung Kong Scholars Programme of China(T2015036)~~
文摘Oxidative dehydrogenation of light alkanes to alkenes is an attractive alternative route for industrial direct dehydrogenation because of favorable thermodynamic and kinetic characteristics,but encounters difficulties in selectivity control for alkenes because of over-oxidation reactions that produce a substantial amount of undesired carbon oxides.Recent progress has revealed that boron nitride is a highly promising catalyst in the oxidative dehydrogenation of light alkanes because of its superior selectivity for and high productivity of light alkenes,negligible formation of CO2,and remarkable catalyst stability.From this viewpoint,recent works on boron nitride in the oxidative dehydrogenations of ethane,propane,butane,and ethylbenzene are reviewed,and the emphasis of this viewpoint is placed on discussing the catalytic origin of boron nitride in oxidative dehydrogenation reactions.After analyzing recent progress in the use of boron nitride for oxidative dehydrogenation reactions and finding much new evidence,we conclude that pure boron nitride is catalytically inert,and an activation period is required under the reaction conditions;this process is accompanied by an oxygen functionalization at the edge of boron nitride;the B-O species themselves have no catalytic activity in C-H cleavage,and the B-OH groups,with the assistance of molecular oxygen,play the key role in triggering the oxidative dehydrogenation of propane;the dissociative adsorption of molecular oxygen is involved in the reaction process;and a straightforward strategy for preparing an active boron nitride catalyst with hydroxyl groups at the edges can efficiently enhance the catalytic efficacy.A new redox reaction cycle based on the B-OH sites is also proposed.Furthermore,as this is a novel catalytic system,there is an urgent need to develop new methods to optimize the catalytic performances,clarify the catalytic function of boron species in the alkane ODH reactions,and disclose the reaction mechanism under realistic reaction conditions.
文摘The discovery of the high activity and selectivity of boron-based catalysts for oxidative dehydrogenation(ODH)of alkanes to olefins has attracted significant attention in the exploration of a new method for the synthesis of highly active and selective catalysts.Herein,we describe the synthesis of porous boron-doped silica nanofibers(PBSNs)100-150 nm in diameter by electrospinning and the study of their catalytic performance.The electrospinning synthesis of the catalyst ensures the uniform dispersion and stability of the boron species on the open silica fiber framework.The one-dimensional nanofibers with open pore structures not only prevented diffusion limitation but also guaranteed high catalytic activity at high weight hourly space velocity(WHSV)in the ODH of alkanes.Compared to other supported boron oxide catalysts,PBSN catalysts showed higher olefin selectivity and stability.The presence of Si-OH groups in silica-supported boron catalysts may cause low propylene selectivity during the ODH of propane.When the ODH conversion of ethane reached 44.3%,the selectivity and productivity of ethylene were 84%and 44.2%g_(cat)^(-1)s^(-1),respectively.In the case of propane ODH,the conversion,selectivity of olefins,and productivity of propylene are 19.2%,90%,and 76.6 jimol g_(cat)^(-1)s^(-1),respectively.No significant variations in the conversion and product selectivity occurred during 20 h of operation at a high WHSV of 84.6 h^(-1).Transient analysis and kinetic experiments indicated that the activation of O2 was influenced by alkanes during the ODH reaction.
文摘This review paper aims at analysing the state of the art for partial oxidation and oxidative dehydrogenation(ODH) reactions of lower alkanes C–Cinto olefins and oxygenated products(aldehydes, anhydrides,carboxylic acids) on metal oxide catalysts with cations of variable oxidation state, such as Mo and V in particular. Key parameters to be met by the catalysts, such as their redox properties, their structural aspects, active sites composed of ensembles of atoms isolated one from the others, mechanisms of reactions, are discussed. Main features of the different reactions of C–Calkanes and catalysts are analysed and their generalisation for determining more active and more selective catalysts is attempted. Prospective views for the future of the domain are proposed.
基金supported by the National Natural Science Foundation of China(21772085,21971107,2201101)China Postdoctoral Science Foundation(2021T140309,2021M691511)。
文摘Alkylamines are important motifs in pharmaceutical and material sciences.The existing reports of C-H amination are limited to ammonia,diazo and azide nitrogen sources.This work describes a rapid construction of C-N bonds from accessible nitroarene and alkane feedstock under decatungstate catalysis.A variety of C-H precursors including gaseous,linear,cyclic and benzylic hydrocarbons could adopt this protocol to afford the corresponding alkylamines in high efficiency.
基金supported by the National Key Research and Development Program of China(2017YFA0206803)the innovation Academy for Green Manufacture of Chinese Academy of Science(IAGM2020C17)+3 种基金the Key Programs of the Chinese Academy of Sciences(KFZD-SW-413)the National Nature Science Foundation of China(21808223)the Key Programs of Fujian Institute of Innovation,CAS(FJCXY18020203)Chinese Academy of Sciences,the One Hundred Talent Program of CAS。
文摘The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundant production of maleic anhydride(MA).Vanadium phosphorous oxide(VPO)is the most effective catalyst for selective oxidation of n-butane to MA so far.Interestingly,the VPO complex exists in more or less fifteen different structures,each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state,lattice oxygen,acidity etc.,which relies on precursor preparation method and the activation conditions of catalysts.The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants,or either introducing template or structural-directing agents.Meanwhile,new preparation strategies such as electrospinning,ball milling,hydrothermal,barothermal,ultrasound,microwave irradiation,calcination,sol-gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance.Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield.To analyze the performance of the catalytic precursor,the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction,phosphorus supplement,water supplement,deactivation,and air/n-butane pretreatment etc.related to the various industrial applications of VPO.
文摘The methanol-to-olefin (MTO) reaction was investigated in a bench-scale, fixed-bed reactor using an extruded catalyst composed of a commercial SAPO-34 (65 weight percentage, wt-%) embedded in an amorphous SiO2 matrix (35 wt-%). The texture properties, acidity and crystal structure of the pure SAPO-34 and its extruded form (E-SAPO-34) were analyzed and the results indicated that the extrusion step did not affect the properties of the catalyst. Subsequently, E-SAPO-34 was tested in a temperature range between 300 and 500 ~C, using an aqueous methanol mixture (80 wt-% water content) fed at a weight hour space velocity (WHSV) of 1.21 h-1. At 300 ~C, a low conversion was observed combined with the catalyst deactivation, which was ascribed to oligomeriza-tion and condensation reactions. The coke analysis showed the presence of diamandoid hydrocarbons, which are known to be inactive molecules in the MTO process. At higher temperatures, a quasi-steady state was reached during a 6 h reaction where the optimal temperature was identified at 450℃, which incidentally led to the lowest coke deposition combined with the highest H/C ratio. Above 450℃, surges of ethylene and methane were associated to a combination of H-transfer and protolytic cracking reactions. Finally, the present work underscored the convenience of the extrusion technique for testing catalysts at simulated scale-up conditions.