期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
RACK1A promotes hypocotyl elongation by scaffolding light signaling components in Arabidopsis
1
作者 Yajuan Fu Wei Zhu +6 位作者 Yeling Zhou Yujing Su Zhiyong Li Dayan Zhang Dong Zhang Jinyu Shen Jiansheng Liang 《Journal of Integrative Plant Biology》 SCIE CAS 2024年第5期956-972,共17页
Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling.Among these,RACK1A(Receptors for Activated C Kinase 1A)stands out as a multifaceted scaffold protein functioning as a central in... Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling.Among these,RACK1A(Receptors for Activated C Kinase 1A)stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways.However,the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear.Here,we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways.RACK1A interacts with PHYTOCHROME INTERACTING FACTOR(PIF)3,enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription.Furthermore,RACK1A associates with ELONGATED HYPOCOTYL 5(HY5)to repress HY5 biochemical activity toward target genes,ultimately contributing to hypocotyl elongation.In darkness,RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC(COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system.Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation,ensuring proper skoto-and photo-morphogenic development. 展开更多
关键词 Arabidopsis hypocotyl development light signaling components RACK1 scaffoldprotein
原文传递
Manufacturing of Long Products Made of Innovative Lightweight Materials
2
作者 Karsten Richter Roland Müller +2 位作者 Andreas Kunke Verena Kr? usel Dirk Landgrebe 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第12期1496-1502,共7页
The processing of innovative lightweight materials to sheet metal components and assemblies with globally or locally defined properties is the object of this work. It takes a load-dependent design of components and as... The processing of innovative lightweight materials to sheet metal components and assemblies with globally or locally defined properties is the object of this work. It takes a load-dependent design of components and assemblies, for example, based on the composition of different construction materials or a targeted setting of component areas with specified characteristics to fully exploit the lightweight potential when substituting conventionally used materials. Different process chains for the manufacturing of roll-formed long products made of magnesium alloys and high-strength steels with locally defined properties will be presented in this paper. Depending on the kind of material to be formed and the desired product characteristics, different temperature managements are needed for capable processes. Due to limited formability at room temperature, magnesium alloys require a heating of the forming zones above 200–225 °C throughout the bending process in order to activate additional gliding planes and to avoid any failures in the radii. The realization of local hardening effects requires at least one process-integrated heat treatment when roll forming manganese–boron steels. For both processes, it is imperative to realize a heating and cooling down or quenching appropriate for the manufacturing of long products with the required quality. Additionally, proper line speeds that allow a continuously operated economical production have to be considered. Research results including design, FEA, realization and experimentation of the mentioned process chains and strategies will be described in detail. 展开更多
关键词 Roll forming Heat treatment lightweight component light metals Manganese steels AZ31 magnesium alloy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部