In this paper, artificial intelligence image recognition technology is used to improve the recognition rate of individual domestic fish and reduce the recognition time, aiming at the problem that it is difficult to ea...In this paper, artificial intelligence image recognition technology is used to improve the recognition rate of individual domestic fish and reduce the recognition time, aiming at the problem that it is difficult to easily observe the species and growth of domestic fish in the underwater non-uniform light field environment. First, starting from the image data collected by polarizing imaging technology, this paper uses subpixel convolution reconstruction to enhance the image, uses image translation and fill technology to build the family fish database, builds the Adam-Dropout-CNN (A-D-CNN) network model, and its convolution kernel size is 3 × 3. The maximum pooling was used for downsampling, and the discarding operation was added after the full connection layer to avoid the phenomenon of network overfitting. The adaptive motion estimation algorithm was used to solve the gradient sparse problem. The experiment shows that the recognition rate of A-D-CNN is 96.97% when the model is trained under the domestic fish image database, which solves the problem of low recognition rate and slow recognition speed of domestic fish in non-uniform light field.展开更多
Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays.Tabletop light field 3D display provides a brand-new display form th...Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays.Tabletop light field 3D display provides a brand-new display form that satisfies multi-user shared viewing and collaborative works,and it is poised to become a potential alternative to the traditional wall and portable display forms.However,a large radial viewing angle and correct radial perspective and parallax are still out of reach for most current tabletop light field 3D displays due to the limited amount of spatial information.To address the viewing angle and perspective issues,a novel integral imaging-based tabletop light field 3D display with a simple flat-panel structure is proposed and developed by applying a compound lens array,two spliced 8K liquid crystal display panels,and a light shaping diffuser screen.The compound lens array is designed to be composed of multiple three-piece compound lens units by employing a reverse design scheme,which greatly extends the radial viewing angle in the case of a limited amount of spatial information and balances other important 3D display parameters.The proposed display has a radial viewing angle of 68.7°in a large display size of 43.5 inches,which is larger than the conventional tabletop light field 3D displays.The radial perspective and parallax are correct,and high-resolution 3D images can be reproduced in large radial viewing positions.We envision that this proposed display opens up possibility for redefining the display forms of consumer electronics.展开更多
Single-cell volumetric imaging is essential for researching individual characteristics of cells.As a nonscanning imaging technique,lighteld microscopy(LFM)is a critical tool to achieve realtime three-dimensional imagi...Single-cell volumetric imaging is essential for researching individual characteristics of cells.As a nonscanning imaging technique,lighteld microscopy(LFM)is a critical tool to achieve realtime three-dimensional imaging with the advantage of single-shot.To address the inherent limits including nonuniform resolution and block-wise artifacts,various modied LFM strategies have been developed to provide new insights into the structural and functional information of cells.This review will introduce the principle and development of LFM,discuss the improved approaches based on hardware designs and 3D reconstruction algorithms,and present the applications in single-cell imaging.展开更多
森林的实时渲染及光照是视景系统中的一个难题.基于图像的渲染方法(IBR)由于渲染速度与模型复杂度无关,被广泛应用于场景重建.基于光流场(Light Field Rendering)的IBR技术,提出一种迭代投射算法来进行外形重建,实现了具有实时光影特征...森林的实时渲染及光照是视景系统中的一个难题.基于图像的渲染方法(IBR)由于渲染速度与模型复杂度无关,被广泛应用于场景重建.基于光流场(Light Field Rendering)的IBR技术,提出一种迭代投射算法来进行外形重建,实现了具有实时光影特征的森林效果.实验表明该算法结合了传统迭代、投射算法各自的优点,在质量和效率方面取得了平衡.展开更多
Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.They describe the holographic information of scenes by representing the amount of light flowing in every ...Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space.The physical concept of light fields was first proposed in 1936,and light fields are becoming increasingly important in the field of computer graphics,especially with the fast growth of computing capacity as well as network bandwidth.In this article,light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years:(1)depth estimation,(2)content editing,(3)image quality,(4)scene reconstruction and view synthesis,and(5)industrial products because the technologies of lights fields also intersect with industrial applications.State-of-the-art research has focused on light field acquisition,manipulation,and display.In addition,the research has extended from the laboratory to industry.According to these achievements and challenges,in the near future,the applications of light fields could offer more portability,accessibility,compatibility,and ability to visualize the world.展开更多
his paper adopts the 3-3-2 information processing method for the capture of moving objects as its premise, and proposes a basic principle of three-dimensional (3D) imaging using biological compound eye. Traditional bi...his paper adopts the 3-3-2 information processing method for the capture of moving objects as its premise, and proposes a basic principle of three-dimensional (3D) imaging using biological compound eye. Traditional bionic vision is limited by the available hardware. Therefore, in this paper, the new-generation technology of microlens-array light-field camera is proposed as a potential method for the extraction of depth information from a single image. A significant characteristic of light-field imaging is that it records intensity and directional information from the lights entering the camera. Herein, a refocusing method using light-field image is proposed. By calculating the focusing cost at different depths from the object, the imaging plane of the object is determined, and a depth map is constructed based on the position of the object’s imaging plane. Compared with traditional light-field depth estimation, the depth map calculated by this method can significantly improve resolution and does not depend on the number of light-field microlenses. In addition, considering that software algorithms rely on hardware structure, this study develops an imaging hardware that is only 7 cm long based on the second-generation microlens camera’s structure, further validating its important refocusing characteristics. It thereby provides a technical foundation for 3D imaging with a single camera.展开更多
A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels c...A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.展开更多
Image-Based Rendering (IBR) is one powerful approach for generating virtual views. It can provide convincing animations without an explicit geometric representation. In this paper, several implementations of light f...Image-Based Rendering (IBR) is one powerful approach for generating virtual views. It can provide convincing animations without an explicit geometric representation. In this paper, several implementations of light field rendering are summa- rized from prior arts. Several characteristics, such as the regu- lar pattern in Epipolar Plane Images (EPIs), of light field are explored with detail under 1D parallel camera arrangement. It is proved that it is quite efficient to synthesize virtual views for Super Multi-View (SMV) application, which is in the third phase of Free- Viewpoint Television (FTV). In comparison with convolutional stereo matching method, in which the inter- mediate view is synthesized by the two adjacent views, light field rendering makes use of more views supplied to get the high-quality views.展开更多
Light field cameras have a wide area of applications, such as digital refocusing, scene depth information extraction and 3-D image reconstruction. By recording the energy and direction information of light field, they...Light field cameras have a wide area of applications, such as digital refocusing, scene depth information extraction and 3-D image reconstruction. By recording the energy and direction information of light field, they can well solve many technical problems that cannot be done by conventional cameras. An important feature of light field cameras is that a microlens array is inserted between the sensor and main lens, through which a series of sub-aperture images of different perspectives are formed. Based on this feature and the full-focus image acquisition technique, we propose a light-field optical flow calculation algorithm, which involves both the depth estimation and the occlusion detection and guarantees the edge-preserving property. This algorithm consists of three steps: 1) Computing the dense optical flow field among a group of sub-aperture images;2) Obtaining a robust depth-estimation by initializing the light-filed optical flow using the linear regression approach and detecting occluded areas using the consistency;3) Computing an improved light-field depth map by using the edge-preserving algorithm to realize interpolation optimization. The reliability and high accuracy of the proposed approach is validated by experimental results.展开更多
We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost image...We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost images of two detected objects with longitudinal distance less than the depth of field can be achieved simultaneously. The longitudinal coherence scale of the thermal light lensless ghost imaging determines the depth of field. Theoretical analysis can well explain the experimental results.展开更多
为了克服基于单一视差合成的光场图像编码方法在遮挡区域无法恢复纹理细节的问题,提出一种基于多特征融合和几何感知网络的光场图像编码方法,以进一步提升遮挡场景下光场图像的压缩性能.首先,对密集光场稀疏采样,使用通用视频编码器(ver...为了克服基于单一视差合成的光场图像编码方法在遮挡区域无法恢复纹理细节的问题,提出一种基于多特征融合和几何感知网络的光场图像编码方法,以进一步提升遮挡场景下光场图像的压缩性能.首先,对密集光场稀疏采样,使用通用视频编码器(versatile video coding,VVC)对稀疏光场进行压缩;然后,在解码端使用2个关键分支模块,即视差估计模块和空间角度联合卷积模块,以获取光场图像全局的几何信息,确保在密集纹理和遮挡区域能够更充分地恢复特征;最后,为了挖掘2个分支融合特征的结构信息,构建了双向视图的堆栈结构,并运用几何感知的细化网络以重建高质量的密集光场.实验结果表明,与已有国际上流行的光场图像编码方法相比,所提出的方法具有显著优势.展开更多
Light field tomography,an optical combustion diagnostic technology,has recently attracted extensive attention due to its easy implementation and non-intrusion.However,the conventional iterative methods are high data t...Light field tomography,an optical combustion diagnostic technology,has recently attracted extensive attention due to its easy implementation and non-intrusion.However,the conventional iterative methods are high data throughput,low efficiency and time-consuming,and the existing machine learning models use the radiation spectrum information of the flame to realize the parameter field measurement at the current time.It is still an offline measurement and cannot realize the online prediction of the instantaneous structure of the actual turbulent combustion field.In this work,a novel online prediction model of flame temperature instantaneous structure based on deep convolutional neural network and long short-term memory(CNN-LSTM)is proposed.The method uses the characteristics of local perception,shared weight,and pooling of CNN to extract the threedimensional(3D)features of flame temperature and outgoing radiation images.Moreover,the LSTM is used to comprehensively utilize the ten historical time series information of high dynamic combustion flame to accurately predict 3D temperature at three future moments.A chaotic time-series dataset based on the flame radiation forward model is built to train and validate the performance of the proposed CNN-LSTM model.It is proven that the CNN-LSTM prediction model can successfully learn the evolution pattern of combustion flame and make accurate predictions.展开更多
光场成像技术可以同时记录入射光线的空间分布信息和传播方向信息,结合相关反演算法,可以进行火焰三维温度场的重建。最小二乘QR分解算法(least squares via QR factorization,LSQR)可以有效求解基于大型稀疏矩阵的线性问题,但是在对火...光场成像技术可以同时记录入射光线的空间分布信息和传播方向信息,结合相关反演算法,可以进行火焰三维温度场的重建。最小二乘QR分解算法(least squares via QR factorization,LSQR)可以有效求解基于大型稀疏矩阵的线性问题,但是在对火焰辐射强度求解的过程中,难以保证求解的非负性和准确性。非负最小二乘算法(non-negative least squares,NNLS)可以保证求解的非负性,但是计算效率太低。本文提出将最小二乘残差方法(least square minimal residual,LSMR)用于火焰光场成像三维温度场重建,并研究其重建精度、计算效率、抗噪性能等指标。仿真实验表明,LSMR和NNLS算法可以在不同噪声水平下保证求解火焰辐射强度的非负性。在噪声为5%、10%、15%和20%的情况下,LSMR和NNLS算法对辐射强度的求解精度均比LSQR提高了10%以上,且LSMR算法的求解时间比LSQR和NNLS分别降低了一个数量级和四个数量级。可见,LSMR算法可以在保证求解精度的情况下大幅提高运算效率。最后用LSMR算法对模拟光场火焰进行温度场重建,在不同噪声水平下,平均相对误差都保持在1.2%以内,验证了LSMR算法在重建时的准确性和可靠性。展开更多
文摘In this paper, artificial intelligence image recognition technology is used to improve the recognition rate of individual domestic fish and reduce the recognition time, aiming at the problem that it is difficult to easily observe the species and growth of domestic fish in the underwater non-uniform light field environment. First, starting from the image data collected by polarizing imaging technology, this paper uses subpixel convolution reconstruction to enhance the image, uses image translation and fill technology to build the family fish database, builds the Adam-Dropout-CNN (A-D-CNN) network model, and its convolution kernel size is 3 × 3. The maximum pooling was used for downsampling, and the discarding operation was added after the full connection layer to avoid the phenomenon of network overfitting. The adaptive motion estimation algorithm was used to solve the gradient sparse problem. The experiment shows that the recognition rate of A-D-CNN is 96.97% when the model is trained under the domestic fish image database, which solves the problem of low recognition rate and slow recognition speed of domestic fish in non-uniform light field.
基金We are grateful for financial supports from National Key R&D Program of China(Grant No.2021YFB2802300)the National Natural Science Foundation of China(Grant Nos.62105014,62105016,and 62020106010)。
文摘Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays.Tabletop light field 3D display provides a brand-new display form that satisfies multi-user shared viewing and collaborative works,and it is poised to become a potential alternative to the traditional wall and portable display forms.However,a large radial viewing angle and correct radial perspective and parallax are still out of reach for most current tabletop light field 3D displays due to the limited amount of spatial information.To address the viewing angle and perspective issues,a novel integral imaging-based tabletop light field 3D display with a simple flat-panel structure is proposed and developed by applying a compound lens array,two spliced 8K liquid crystal display panels,and a light shaping diffuser screen.The compound lens array is designed to be composed of multiple three-piece compound lens units by employing a reverse design scheme,which greatly extends the radial viewing angle in the case of a limited amount of spatial information and balances other important 3D display parameters.The proposed display has a radial viewing angle of 68.7°in a large display size of 43.5 inches,which is larger than the conventional tabletop light field 3D displays.The radial perspective and parallax are correct,and high-resolution 3D images can be reproduced in large radial viewing positions.We envision that this proposed display opens up possibility for redefining the display forms of consumer electronics.
基金This paper was supported by Shenzhen Science and Technology Innovation grants(JCYJ20200109115633343,JCYJ20210324123610030).
文摘Single-cell volumetric imaging is essential for researching individual characteristics of cells.As a nonscanning imaging technique,lighteld microscopy(LFM)is a critical tool to achieve realtime three-dimensional imaging with the advantage of single-shot.To address the inherent limits including nonuniform resolution and block-wise artifacts,various modied LFM strategies have been developed to provide new insights into the structural and functional information of cells.This review will introduce the principle and development of LFM,discuss the improved approaches based on hardware designs and 3D reconstruction algorithms,and present the applications in single-cell imaging.
文摘森林的实时渲染及光照是视景系统中的一个难题.基于图像的渲染方法(IBR)由于渲染速度与模型复杂度无关,被广泛应用于场景重建.基于光流场(Light Field Rendering)的IBR技术,提出一种迭代投射算法来进行外形重建,实现了具有实时光影特征的森林效果.实验表明该算法结合了传统迭代、投射算法各自的优点,在质量和效率方面取得了平衡.
基金The last author was supported by the National Key R&D Program of China,No.2019YFB1405703.
文摘Light fields are vector functions that map the geometry of light rays to the corresponding plenoptic attributes.They describe the holographic information of scenes by representing the amount of light flowing in every direction through every point in space.The physical concept of light fields was first proposed in 1936,and light fields are becoming increasingly important in the field of computer graphics,especially with the fast growth of computing capacity as well as network bandwidth.In this article,light field imaging is reviewed from the following aspects with an emphasis on the achievements of the past five years:(1)depth estimation,(2)content editing,(3)image quality,(4)scene reconstruction and view synthesis,and(5)industrial products because the technologies of lights fields also intersect with industrial applications.State-of-the-art research has focused on light field acquisition,manipulation,and display.In addition,the research has extended from the laboratory to industry.According to these achievements and challenges,in the near future,the applications of light fields could offer more portability,accessibility,compatibility,and ability to visualize the world.
基金The National Major Project Research and Development Project (2017YFB0503003)The National Natural Science Foundation of China(61101157, 60602042).
文摘his paper adopts the 3-3-2 information processing method for the capture of moving objects as its premise, and proposes a basic principle of three-dimensional (3D) imaging using biological compound eye. Traditional bionic vision is limited by the available hardware. Therefore, in this paper, the new-generation technology of microlens-array light-field camera is proposed as a potential method for the extraction of depth information from a single image. A significant characteristic of light-field imaging is that it records intensity and directional information from the lights entering the camera. Herein, a refocusing method using light-field image is proposed. By calculating the focusing cost at different depths from the object, the imaging plane of the object is determined, and a depth map is constructed based on the position of the object’s imaging plane. Compared with traditional light-field depth estimation, the depth map calculated by this method can significantly improve resolution and does not depend on the number of light-field microlenses. In addition, considering that software algorithms rely on hardware structure, this study develops an imaging hardware that is only 7 cm long based on the second-generation microlens camera’s structure, further validating its important refocusing characteristics. It thereby provides a technical foundation for 3D imaging with a single camera.
基金Project supported by the National Natural Science Foundation of China(Grant No.61307020)Beijing Natural Science Foundation(Grant No.4172038)the Qingdao Opto-electronic United Foundation,China
文摘A light field modulated imaging spectrometer (LFMIS) can acquire the spatial-spectral datacube of targets of interest or a scene in a single shot. The spectral information of a point target is imaged on the pixels covered by a microlens. The pixels receive spectral information from different spectral filters to the diffraction and misalignments of the optical components. In this paper, we present a linear spectral multiplexing model of the acquired target spectrum. A calibration method is proposed for calibrating the center wavelengths and bandwidths of channels of an LFMIS system based on the liner-variable filter (LVF) and for determining the spectral multiplexing matrix. In order to improve the accuracy of the restored spectral data, we introduce a reconstruction algorithm based on the total least square (TLS) approach. Simulation and experimental results confirm the performance of the spectrum reconstruction algorithm and validate the feasibility of the proposed calibrating scheme.
文摘Image-Based Rendering (IBR) is one powerful approach for generating virtual views. It can provide convincing animations without an explicit geometric representation. In this paper, several implementations of light field rendering are summa- rized from prior arts. Several characteristics, such as the regu- lar pattern in Epipolar Plane Images (EPIs), of light field are explored with detail under 1D parallel camera arrangement. It is proved that it is quite efficient to synthesize virtual views for Super Multi-View (SMV) application, which is in the third phase of Free- Viewpoint Television (FTV). In comparison with convolutional stereo matching method, in which the inter- mediate view is synthesized by the two adjacent views, light field rendering makes use of more views supplied to get the high-quality views.
文摘Light field cameras have a wide area of applications, such as digital refocusing, scene depth information extraction and 3-D image reconstruction. By recording the energy and direction information of light field, they can well solve many technical problems that cannot be done by conventional cameras. An important feature of light field cameras is that a microlens array is inserted between the sensor and main lens, through which a series of sub-aperture images of different perspectives are formed. Based on this feature and the full-focus image acquisition technique, we propose a light-field optical flow calculation algorithm, which involves both the depth estimation and the occlusion detection and guarantees the edge-preserving property. This algorithm consists of three steps: 1) Computing the dense optical flow field among a group of sub-aperture images;2) Obtaining a robust depth-estimation by initializing the light-filed optical flow using the linear regression approach and detecting occluded areas using the consistency;3) Computing an improved light-field depth map by using the edge-preserving algorithm to realize interpolation optimization. The reliability and high accuracy of the proposed approach is validated by experimental results.
基金Supported by the Beijing Natural Science Foundation under Grant No 4133086the Fundamental Research Funds for th Central Universities under Grant No 2-9-2014-022
文摘We propose optical experiments to study the depth of field for a thermal light lensless ghost imaging system. It is proved that the diaphragm is an important factor to influence the depth of field, and the ghost images of two detected objects with longitudinal distance less than the depth of field can be achieved simultaneously. The longitudinal coherence scale of the thermal light lensless ghost imaging determines the depth of field. Theoretical analysis can well explain the experimental results.
文摘由于低照度图像具有对比度低、细节丢失严重、噪声大等缺点,现有的目标检测算法对低照度图像的检测效果不理想.为此,本文提出一种结合空间感知注意力机制和多尺度特征融合(Spatial-aware Attention Mechanism and Multi-Scale Feature Fusion,SAM-MSFF)的低照度目标检测方法 .该方法首先通过多尺度交互内存金字塔融合多尺度特征,增强低照度图像特征中的有效信息,并设置内存向量存储样本的特征,捕获样本之间的潜在关联性;然后,引入空间感知注意力机制获取特征在空间域的长距离上下文信息和局部信息,从而增强低照度图像中的目标特征,抑制背景信息和噪声的干扰;最后,利用多感受野增强模块扩张特征的感受野,对具有不同感受野的特征进行分组重加权计算,使检测网络根据输入的多尺度信息自适应地调整感受野的大小.在ExDark数据集上进行实验,本文方法的平均精度(mean Average Precision,mAP)达到77.04%,比现有的主流目标检测方法提高2.6%~14.34%.
文摘为了克服基于单一视差合成的光场图像编码方法在遮挡区域无法恢复纹理细节的问题,提出一种基于多特征融合和几何感知网络的光场图像编码方法,以进一步提升遮挡场景下光场图像的压缩性能.首先,对密集光场稀疏采样,使用通用视频编码器(versatile video coding,VVC)对稀疏光场进行压缩;然后,在解码端使用2个关键分支模块,即视差估计模块和空间角度联合卷积模块,以获取光场图像全局的几何信息,确保在密集纹理和遮挡区域能够更充分地恢复特征;最后,为了挖掘2个分支融合特征的结构信息,构建了双向视图的堆栈结构,并运用几何感知的细化网络以重建高质量的密集光场.实验结果表明,与已有国际上流行的光场图像编码方法相比,所提出的方法具有显著优势.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51976044,and 52227813)the Foundation for Heilongjiang Touyan Innovation Team Program。
文摘Light field tomography,an optical combustion diagnostic technology,has recently attracted extensive attention due to its easy implementation and non-intrusion.However,the conventional iterative methods are high data throughput,low efficiency and time-consuming,and the existing machine learning models use the radiation spectrum information of the flame to realize the parameter field measurement at the current time.It is still an offline measurement and cannot realize the online prediction of the instantaneous structure of the actual turbulent combustion field.In this work,a novel online prediction model of flame temperature instantaneous structure based on deep convolutional neural network and long short-term memory(CNN-LSTM)is proposed.The method uses the characteristics of local perception,shared weight,and pooling of CNN to extract the threedimensional(3D)features of flame temperature and outgoing radiation images.Moreover,the LSTM is used to comprehensively utilize the ten historical time series information of high dynamic combustion flame to accurately predict 3D temperature at three future moments.A chaotic time-series dataset based on the flame radiation forward model is built to train and validate the performance of the proposed CNN-LSTM model.It is proven that the CNN-LSTM prediction model can successfully learn the evolution pattern of combustion flame and make accurate predictions.
文摘光场成像技术可以同时记录入射光线的空间分布信息和传播方向信息,结合相关反演算法,可以进行火焰三维温度场的重建。最小二乘QR分解算法(least squares via QR factorization,LSQR)可以有效求解基于大型稀疏矩阵的线性问题,但是在对火焰辐射强度求解的过程中,难以保证求解的非负性和准确性。非负最小二乘算法(non-negative least squares,NNLS)可以保证求解的非负性,但是计算效率太低。本文提出将最小二乘残差方法(least square minimal residual,LSMR)用于火焰光场成像三维温度场重建,并研究其重建精度、计算效率、抗噪性能等指标。仿真实验表明,LSMR和NNLS算法可以在不同噪声水平下保证求解火焰辐射强度的非负性。在噪声为5%、10%、15%和20%的情况下,LSMR和NNLS算法对辐射强度的求解精度均比LSQR提高了10%以上,且LSMR算法的求解时间比LSQR和NNLS分别降低了一个数量级和四个数量级。可见,LSMR算法可以在保证求解精度的情况下大幅提高运算效率。最后用LSMR算法对模拟光场火焰进行温度场重建,在不同噪声水平下,平均相对误差都保持在1.2%以内,验证了LSMR算法在重建时的准确性和可靠性。