期刊文献+
共找到130篇文章
< 1 2 7 >
每页显示 20 50 100
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:1
1
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
下载PDF
Light gradient boosting machine with optimized hyperparameters for identification of malicious access in IoT network
2
作者 Debasmita Mishra Bighnaraj Naik +3 位作者 Janmenjoy Nayak Alireza Souri Pandit Byomakesha Dash S.Vimal 《Digital Communications and Networks》 SCIE CSCD 2023年第1期125-137,共13页
In this paper,an advanced and optimized Light Gradient Boosting Machine(LGBM)technique is proposed to identify the intrusive activities in the Internet of Things(IoT)network.The followings are the major contributions:... In this paper,an advanced and optimized Light Gradient Boosting Machine(LGBM)technique is proposed to identify the intrusive activities in the Internet of Things(IoT)network.The followings are the major contributions:i)An optimized LGBM model has been developed for the identification of malicious IoT activities in the IoT network;ii)An efficient evolutionary optimization approach has been adopted for finding the optimal set of hyper-parameters of LGBM for the projected problem.Here,a Genetic Algorithm(GA)with k-way tournament selection and uniform crossover operation is used for efficient exploration of hyper-parameter search space;iii)Finally,the performance of the proposed model is evaluated using state-of-the-art ensemble learning and machine learning-based model to achieve overall generalized performance and efficiency.Simulation outcomes reveal that the proposed approach is superior to other considered methods and proves to be a robust approach to intrusion detection in an IoT environment. 展开更多
关键词 IoT security Ensemble method light gradient boosting machine machine learning Intrusion detection
下载PDF
基于LightGBM的智能可穿戴设备用户行为预测
3
作者 肖新元 《移动信息》 2024年第2期200-202,共3页
智能可穿戴设备产生的大量数据是人类宝贵的数字资源。使用开放数据集和主流数据分析工具,如可进行快速模型开发的PyCaret模块,有助于人们进行数据挖掘工作,且不被细节所困扰。作为Kaggle竞赛爱好者的常用工具,LightGBM分类器对用户行... 智能可穿戴设备产生的大量数据是人类宝贵的数字资源。使用开放数据集和主流数据分析工具,如可进行快速模型开发的PyCaret模块,有助于人们进行数据挖掘工作,且不被细节所困扰。作为Kaggle竞赛爱好者的常用工具,LightGBM分类器对用户行为的预测表现优异,对此文中的研究结果也得到验证。 展开更多
关键词 GBDT lightgbm PyCaret 机器学习
下载PDF
A Hybrid Ensemble Learning Approach Utilizing Light Gradient Boosting Machine and Category Boosting Model for Lifestyle-Based Prediction of Type-II Diabetes Mellitus
4
作者 Mahadi Nagassou Ronald Waweru Mwangi Euna Nyarige 《Journal of Data Analysis and Information Processing》 2023年第4期480-511,共32页
Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradien... Addressing classification and prediction challenges, tree ensemble models have gained significant importance. Boosting ensemble techniques are commonly employed for forecasting Type-II diabetes mellitus. Light Gradient Boosting Machine (LightGBM) is a widely used algorithm known for its leaf growth strategy, loss reduction, and enhanced training precision. However, LightGBM is prone to overfitting. In contrast, CatBoost utilizes balanced base predictors known as decision tables, which mitigate overfitting risks and significantly improve testing time efficiency. CatBoost’s algorithm structure counteracts gradient boosting biases and incorporates an overfitting detector to stop training early. This study focuses on developing a hybrid model that combines LightGBM and CatBoost to minimize overfitting and improve accuracy by reducing variance. For the purpose of finding the best hyperparameters to use with the underlying learners, the Bayesian hyperparameter optimization method is used. By fine-tuning the regularization parameter values, the hybrid model effectively reduces variance (overfitting). Comparative evaluation against LightGBM, CatBoost, XGBoost, Decision Tree, Random Forest, AdaBoost, and GBM algorithms demonstrates that the hybrid model has the best F1-score (99.37%), recall (99.25%), and accuracy (99.37%). Consequently, the proposed framework holds promise for early diabetes prediction in the healthcare industry and exhibits potential applicability to other datasets sharing similarities with diabetes. 展开更多
关键词 boosting Ensemble Learning Category boosting light gradient boosting machine
下载PDF
基于LightGBM模型的甘肃省临夏县滑坡易发性评价
5
作者 何哲 石玉玲 +2 位作者 李富春 贾卓龙 晏长根 《水资源与水工程学报》 CSCD 北大核心 2024年第1期197-205,216,共10页
甘肃省临夏县地质环境复杂,滑坡灾害发育,对当地居民生产生活造成严重威胁,亦对工程建设的开展造成一定阻碍,因此,选取高效准确的机器学习方法对临夏县进行滑坡易发性评价具有重大意义。首先依据遥感影像和野外勘察资料,选取了1718处滑... 甘肃省临夏县地质环境复杂,滑坡灾害发育,对当地居民生产生活造成严重威胁,亦对工程建设的开展造成一定阻碍,因此,选取高效准确的机器学习方法对临夏县进行滑坡易发性评价具有重大意义。首先依据遥感影像和野外勘察资料,选取了1718处滑坡样本,遴选了滑坡灾变的16种影响因子并建立滑坡影响因子评价体系;再结合预测精度和运行时间等指标对比了轻量级梯度提升机(LightGBM)模型与主流机器学习模型的性能;最后利用混淆矩阵分级方法进行了基于LightGBM模型的临夏县滑坡易发性评价。结果表明:临夏县重要滑坡影响因子为地表植被和地形地貌因子,其中土地覆盖为最主要影响因子;LightGBM模型预测精度高达0.931,且运行速度仅为11.7 s,既能保证高精度又极大提升了运行效率;在抽稀后的数据集上,LightGBM模型的预测表现、校准程度和分级结果均优于随机森林(RF)模型;混淆矩阵分级法的较高和高易发区内滑坡分布更为集中,在14.94%的区域内分布着86.86%的滑坡灾害点。滑坡易发性评价结果较好地反映了研究区内滑坡分布发育情况,可为当地工程建设及防灾减灾工作提供一定指导。 展开更多
关键词 滑坡 易发性评价 轻量级梯度提升机 机器学习 甘肃省临夏县
下载PDF
分布式光伏功率数据的IMOWOA和LightGBM混合虚拟采集方法 被引量:2
6
作者 葛磊蛟 杜天硕 孙冰 《中国电机工程学报》 EI CSCD 北大核心 2024年第3期1035-1046,I0015,共13页
点多面广、分散无序的分布式光伏电站规模化接入电网是我国新型电力系统向低碳演进的重要路径之一。低成本、高效率的分布式光伏电站数据获取是光伏电站开展精细化管理、精益化运维的重要基础。为此,该文提出一种基于改进多目标鲸鱼优... 点多面广、分散无序的分布式光伏电站规模化接入电网是我国新型电力系统向低碳演进的重要路径之一。低成本、高效率的分布式光伏电站数据获取是光伏电站开展精细化管理、精益化运维的重要基础。为此,该文提出一种基于改进多目标鲸鱼优化算法(improved multi-objective whale optimization algorithm,IMOWOA)与轻量梯度提升机(light gradient boosting machine,LightGBM)的分布式光伏数据虚拟采集方案。针对虚拟采集区域划分难题,该方案首先在网格化区域划分的基础上提出一种自编码器相似性分析方法,获取满足相似性需求的光伏电站集;为解决参考电站集选择难题,提出一种改进的多目标鲸鱼优化算法,提高算法的全局搜索能力,基于区域内光伏电站的历史功率数据,同时对参考电站子集与LightGBM超参数进行优化,从而实现仅选取部分分布式光伏电站安装完备的数据采集装置,完成区域范围内所有电站功率数据的高精度虚拟采集。最后,以我国江苏省某区域范围内的29个分布式光伏电站为算例进行分析,验证提出的方法的可行性和有效性。 展开更多
关键词 分布式光伏 虚拟采集 鲸鱼优化算法 轻量梯度提升机 多目标优化
下载PDF
基于注意力机制和LSTM-LightGBM的特高压直流输电线路可听噪声无效数据清洗方法
7
作者 吴海荣 李振华 +1 位作者 程紫熠 张传计 《南方电网技术》 CSCD 北大核心 2024年第8期115-123,140,共10页
特高压直流输电线路可听噪声试验过程中,外界环境的突发性干扰会使实验数据中掺杂较多的无效数据,严重影响后续的数据分析。提出了一种基于注意力机制(attention mechanism,AM)和长短时记忆网络-轻量级梯度提升机(long short-term memor... 特高压直流输电线路可听噪声试验过程中,外界环境的突发性干扰会使实验数据中掺杂较多的无效数据,严重影响后续的数据分析。提出了一种基于注意力机制(attention mechanism,AM)和长短时记忆网络-轻量级梯度提升机(long short-term memory network-light gradient boosting machine,LSTM-LightGBM)的输电线路可听噪声无效数据清洗方法。首先,针对可听噪声数据的非线性、高维时序冗余特征等特点,以LSTM神经网络为基础进行特征提取;同时,引入特征维度注意力机制,自适应地分配权重来刻画关键特征信息的表达能力;进而,利用LightGBM对提取到的特征进行分类,检测出无效数据;然后,以某特高压直流输电线路实测可听噪声数据试验分析,结果表明该方法的检测精准率为95.55%,召回率为97.73%,F1分数为0.9663,均优于对比实验模型;最后,将无效数据删除并使用均值插补法填补,无效数据清洗后数据的50%值和95%值基本不变,仅降低无效数据的最大值和5%值。该算法对提高输电线路可听噪声数据的可靠性具有一定参考意义。 展开更多
关键词 输电线路 可听噪声 长短时记忆网络 注意力机制 轻量级梯度提升机 无效数据
下载PDF
基于VMD与优化LightGBM的混凝土拱坝变形预测
8
作者 董志豪 赵二峰 +3 位作者 刘峰 宋桂华 吴斌庆 黎祎 《水电能源科学》 北大核心 2024年第8期132-136,共5页
变形是反映混凝土拱坝安全运行状态的重要指标,因此变形预测模型的研究对拱坝结构健康评价具有重要意义。为充分挖掘拱坝变形监测数据的有效信息,提高监控模型的预测精度,提出一种基于变分模态分解与优化LightGBM的混凝土拱坝变形预测... 变形是反映混凝土拱坝安全运行状态的重要指标,因此变形预测模型的研究对拱坝结构健康评价具有重要意义。为充分挖掘拱坝变形监测数据的有效信息,提高监控模型的预测精度,提出一种基于变分模态分解与优化LightGBM的混凝土拱坝变形预测模型。首先,采用VMD将变形实测数据分解为多个模态分量;其次,引入改进灰狼算法与LightGBM相结合建立混凝土拱坝变形预测模型;随后,对模态分量进行单独建模和预测,最后叠加以得到最终的预测结果。工程实例分析表明,通过有效地分解重构,构建的变形预测模型具有较高的预测精度和泛化性能。 展开更多
关键词 变形预测 变分模态分解 改进灰狼算法 轻量梯度提升机
下载PDF
基于LightGBM的贵阳市气溶胶光学厚度反演
9
作者 普莉兰 张显云 《大气与环境光学学报》 CAS CSCD 2024年第2期232-242,共11页
为充分挖掘国产高分四号卫星(GF-4)的环境监测能力,克服基于查找表方法反演气溶胶光学厚度(AOD)的复杂性和弥补贵阳市无气溶胶监测站点的缺陷,并提升MODISAOD产品的时空分辨率,利用贵阳市研究区的高程数据和GF-4多光谱成像仪(PMS)数据... 为充分挖掘国产高分四号卫星(GF-4)的环境监测能力,克服基于查找表方法反演气溶胶光学厚度(AOD)的复杂性和弥补贵阳市无气溶胶监测站点的缺陷,并提升MODISAOD产品的时空分辨率,利用贵阳市研究区的高程数据和GF-4多光谱成像仪(PMS)数据提取的地表反射率、太阳天顶角、卫星天顶角、相对方位角和归一化植被指数作为特征变量,以MODIS气溶胶产品为标签,基于LightGBM算法构建了贵阳市AOD反演模型。研究结果表明:该模型能够基于GF-4 PMS单时相遥感数据实现较高精度的AOD智能反演,极大简化了AOD反演步骤,且具有较高的建模精度(平均绝对误差E_(MA)、均方根误差E_(RMS)、决定系数R^(2)分别为0.042、0.057、0.751)和预测精度(城区:E_(MA)=0.077,E_(RMS)=0.086;非城区:E_(MA)=0.094,E_(RMS)=0.101),AOD预测值和MODIS AOD具有相似的变化趋势,皮尔逊相关系数为0.697。 展开更多
关键词 高分四号 中分辨率成像光谱仪 气溶胶光学厚度 轻量级梯度提升模型 贵阳市
下载PDF
基于DGA与TPE-LightGBM的变压器故障诊断
10
作者 杨金鑫 廖才波 +3 位作者 胡雄 朱文清 张旭 刘邦 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第4期70-77,共8页
油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机... 油中溶解气体分析(dissolved gas analysis,DGA)对变压器故障的早期预警及诊断具有重要意义。为了提升变压器故障诊断的准确性及可靠性,提出一种基于树结构概率密度估计(tree-structured parzen estimator,TPE)算法优化轻量级梯度提升机(light gradient boosting machine,LightGBM)的变压器故障诊断方法。首先,建立包含油中气体比值、编码等16维DGA特征集合,采用最小绝对收缩和选择(least absolute shrinkage and selection opera-tor,LASSO)算法选择用于变压器故障诊断的有效特征量;其次,构建基于LightGBM的变压器故障诊断方法,并引入TPE算法对LightGBM诊断模型参数进行优化,形成最优故障诊断模型;最后,选用精确度、召回率和F1分数等评价指标对所提诊断模型性能进行评估。研究结果表明,TPE-LightGBM的平均准确率为90.23%,其诊断精度及鲁棒性均优于RF和XGBoost等算法。同时,与现场常用的三比值法进行对比,所提方法的准确性和可靠性均有显著提升。该方法可有效提升电力变压器的智能运维水平。 展开更多
关键词 变压器 油中溶解气体 故障诊断 树结构概率密度估计 LASSO算法 轻量级梯度提升机
下载PDF
基于SAO-LightGBM算法的致密砂岩储层孔隙度预测方法
11
作者 李庆 龙训荣 +2 位作者 吴秀慧 程子洋 杨天翔 《天然气技术与经济》 2024年第4期9-14,86,共7页
孔隙度是评价储层物性的关键参数,四川盆地中部NC地区钻井取心资料有限,储层孔隙度直接获取难度大,而基于常规测井资料的传统孔隙度预测方法误差大、精度低。为了明确NC地区致密砂岩气藏储层物性特征,以上三叠统须家河组四段储层为研究... 孔隙度是评价储层物性的关键参数,四川盆地中部NC地区钻井取心资料有限,储层孔隙度直接获取难度大,而基于常规测井资料的传统孔隙度预测方法误差大、精度低。为了明确NC地区致密砂岩气藏储层物性特征,以上三叠统须家河组四段储层为研究对象,提出了一种改进的机器学习算法SAO-LightGBM;使用该算法分析了孔隙度与地球物理测井参数之间的深层次潜在关系,指出了研究区储层孔隙度与声波时差、密度、中子孔隙度、地层电阻率和自然伽马具有较强的相关性,并基于以上测井参数建立了孔隙度预测模型。研究结果表明:①采用SAO优化算法独特的双重种群机制、高效的探索与利用策略,可以快速寻找到LightGBM的最优超参数组合,提升了模型的预测能力;②在测试数据集上,SAO-LightGBM的平均绝对误差为3.37%,决定系数为0.92。结论认为,较之于其他常规模型,SAO-LightGBM具有更为可靠的预测能力,能够高效完成目标层位孔隙度的预测工作,对NC地区的储层研究和后期勘探开发具有指导作用。 展开更多
关键词 致密砂岩 孔隙度 雪消融优化算法 轻量梯度提升机 机器学习算法 预测模型
下载PDF
基于LightGBM算法和出行链理论的电动汽车充电负荷多时间尺度预测模型
12
作者 庞松岭 范凯迪 +1 位作者 陈超 窦洁 《汽车技术》 CSCD 北大核心 2024年第6期9-16,共8页
为提高电动汽车充电负荷预测的准确性,设计了一种基于轻量级梯度提升机(LightGBM)算法和出行链理论的电动汽车充电负荷多时间尺度预测模型。利用出行链描述用户出行过程,采用蒙特卡洛法抽取时空数据,计算不同区域出行和停留时间的概率... 为提高电动汽车充电负荷预测的准确性,设计了一种基于轻量级梯度提升机(LightGBM)算法和出行链理论的电动汽车充电负荷多时间尺度预测模型。利用出行链描述用户出行过程,采用蒙特卡洛法抽取时空数据,计算不同区域出行和停留时间的概率密度函数,采用牛顿法划分多时间尺度充电概率,明确驾驶时空分布与充电状况,并运用模糊数学定理与LightGBM分类充电负荷数据,构建了多季节多时段预测模型。采用LightGBM高效并行计算模式,明确充电负荷变化规律,实现了多时间尺度预测。试验结果表明:所建立的模型在不同季节和电动汽车数量条件下,预测误差低于100 kW,预测空报率低于3%,可准确展现充电负荷的变化规律。 展开更多
关键词 轻量级梯度提升机 出行链理论 充电负荷 多时间尺度 预测模型
下载PDF
特征提取及数据扩充的GA-LightGBM半导体质量检测方法
13
作者 程云飞 周丽芳 +2 位作者 赵波 谭佳伟 王淑影 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第2期351-356,共6页
半导体质量检测数据具有的“相关性、冗余性、不平衡性”等特点,导致传统的分类算法效率较低,为此,提出一种基于特征提取及数据扩充的GA-LightGBM(genetic algorithm-light gradient boosting machine)质量检测方法。通过结合主成分分析... 半导体质量检测数据具有的“相关性、冗余性、不平衡性”等特点,导致传统的分类算法效率较低,为此,提出一种基于特征提取及数据扩充的GA-LightGBM(genetic algorithm-light gradient boosting machine)质量检测方法。通过结合主成分分析(principal component analysis,PCA)、合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)、遗传算法和LightGBM这4种方法,实现对产品质量的有效识别。实验结果表明,相较于传统分类算法,提出的方法可以有效提升质量检测的效率。 展开更多
关键词 质量检测 主成分分析 合成少数类过采样技术 GA-lightgbm
下载PDF
基于TVF-EMD、GRA和LightGBM的日径流预测组合模型 被引量:7
14
作者 王秀杰 乔鸿飞 +2 位作者 曾勇红 田福昌 张帅 《水资源保护》 EI CAS CSCD 北大核心 2023年第5期135-142,151,共9页
针对径流过程的非线性和非平稳性特点及预报精度低的问题,提出了结合时变滤波器的经验模态分解(TVF-EMD)、灰色关联度分析(GRA)和轻量级梯度提升机(LightGBM)的日径流预测组合模型。以黄河利津站和珠江高要站实测日径流序列为例,建立TVF... 针对径流过程的非线性和非平稳性特点及预报精度低的问题,提出了结合时变滤波器的经验模态分解(TVF-EMD)、灰色关联度分析(GRA)和轻量级梯度提升机(LightGBM)的日径流预测组合模型。以黄河利津站和珠江高要站实测日径流序列为例,建立TVF-EMD-GRA-LightGBM(TGL)组合模型,并将其预测结果与多种单一或组合预测模型的预测结果进行了对比分析。结果表明:TGL组合模型高效且预测性能最佳,利津站和高要站日径流预测结果的纳什效率系数分别为0.949和0.966,相关系数分别为0.974和0.984,峰值流量预测误差分别小于0.078和0.073。TGL组合模型具有预测精度高、运行效率快、适用性强等优势,可用于日径流预测。 展开更多
关键词 日径流预测 轻量级梯度提升机 TVF-EMD 灰色关联度分析
下载PDF
基于ESPRIT-PSA与LightGBM算法的感应电动机转子断条数目诊断新方法
15
作者 许伯强 王晨曦 何俊驰 《华北电力大学学报(自然科学版)》 CAS 北大核心 2023年第5期27-34,共8页
提出一种基于旋转不变信号参数估计技术ESPRIT(Estimation of signal parameters via rotational invariance technique)、模式搜索算法PSA(Pattern search algorithm)与轻型梯度提升机LightGBM(Light gradient boosting machine)结合... 提出一种基于旋转不变信号参数估计技术ESPRIT(Estimation of signal parameters via rotational invariance technique)、模式搜索算法PSA(Pattern search algorithm)与轻型梯度提升机LightGBM(Light gradient boosting machine)结合的感应电动机转子断条数目诊断新方法。模拟了转子断条故障下的瞬时无功功率信号并用其衡量ESPRIT-PSA的性能。结果表明:ESPRIT-PSA只需短时数据就能准确测量瞬时无功功率信号中的转子断条故障特征分量。随后,为解决现有的电机瞬时无功功率信号分析MIRPSA(Motor instantaneous reactive power signal analysis)类方法无法准确诊断转子断条数目的问题,引入LightGBM对转子断条故障进行多分类以准确诊断转子断条数目。最后针对一台异步电动机进行转子断条诊断实验,结果表明:该方法是有效的,并且因将瞬时无功功率作为分析信号而适用于电机低转差率的情况。 展开更多
关键词 异步电动机 转子断条 故障诊断 旋转不变信号参数估计技术 轻型梯度提升机 电机瞬时无功功率信号分析
下载PDF
基于QPSO-LightGBM网络资产脆弱性评估模型
16
作者 戴泽淼 《吉林大学学报(信息科学版)》 CAS 2023年第4期667-675,共9页
为有效减少网络安全事件造成的损失,并对高风险网络资产进行漏洞评估,提出了一种基于量子粒子群轻量级梯度升降算法(QPSO-LightGBM:Quantum Particle Swarm Optimization-Light Gradient Boosting Machine)的多分类预测模型。该模型通... 为有效减少网络安全事件造成的损失,并对高风险网络资产进行漏洞评估,提出了一种基于量子粒子群轻量级梯度升降算法(QPSO-LightGBM:Quantum Particle Swarm Optimization-Light Gradient Boosting Machine)的多分类预测模型。该模型通过对少量过采样技术(MOTE:Minority Oversampling)进行合成从而达到数据平衡,采用量子粒子群算法(QPSO:Quantum Particle Swarm Optimization)实现参数的自动最优化,并使用LightGBM进行建模,进而实现网络资产的多分类预测。为验证模型的有效性,将所提模型与其他算法模型进行了比对,实验结果表明,该模型在各类预测性能指标上都取得了较好的效果。 展开更多
关键词 脆弱性评估 轻量的梯度提升机(lightgbm) 评估模型 量子粒子群算法(QPSO) 网络资产
下载PDF
Coal Rock Condition Detection Model Using Acoustic Emission and Light Gradient Boosting Machine
17
作者 Jing Li Yong Yang +2 位作者 Hongmei Ge Li Zhao Ruxue Guo 《Computers, Materials & Continua》 SCIE EI 2020年第4期151-162,共12页
Coal rock mass instability fracture may result in serious hazards to underground coal mining.Acoustic emissions(AE)stimulated by internal structure fracture should carry lots of favorable information about health cond... Coal rock mass instability fracture may result in serious hazards to underground coal mining.Acoustic emissions(AE)stimulated by internal structure fracture should carry lots of favorable information about health condition of rock mass.AE as a sensitive non-destructive test method is gradually utilized to detect anomaly conditions of coal rock.This paper proposes an improved multi-resolution feature to extract AE waveform at different frequency resolutions using Coilflet Wavelet Transform method(CWT).It is further adopt an efficient Light Gradient Boosting Machine(LightGBM)by several cascaded sub weak classifier models to merge AE features at different views of frequency for coal rock anomaly damage recognition.The results denote that the proposed method achieves excellent recognition performance on anomaly damage levels of coal rock.It is an effective method to detect the critical stability further to predict the rock mass bursting in time. 展开更多
关键词 Acoustic emission light gradient boosting machine coal rock stability
下载PDF
基于高斯混合聚类和LightGBM算法的印度洋次表层温度反演研究 被引量:2
18
作者 汤贵艳 朱善良 +1 位作者 周伟峰 杨树国 《青岛科技大学学报(自然科学版)》 CAS 2023年第2期116-126,共11页
海洋次表层的热力结构对于海洋环流和全球气候变化具有重要的意义。提出一种新的融合高斯混合模型(gaussion mixture model, GMM)和轻量级梯度提升机(light gradient boosting machine, LightGBM)算法的海洋次表层温度(ocean subsurface... 海洋次表层的热力结构对于海洋环流和全球气候变化具有重要的意义。提出一种新的融合高斯混合模型(gaussion mixture model, GMM)和轻量级梯度提升机(light gradient boosting machine, LightGBM)算法的海洋次表层温度(ocean subsurface temperature, OST)反演模型,利用海表温度(sea surface temperature, SST)、海表盐度(sea surface salinity, SSS)、海表高度(sea surface height, SSH)、海表风场(sea surface wind, SSW)的水平分量(USSW)和垂直分量(VSSW)等多源海表参数对印度洋海域的次表层热力结构进行反演,并采用均方根误差和决定系数对模型进行验证。结果表明:所提出的模型可以准确反演印度洋海域的OST分布特征和季节变化规律。在此基础上,设计了不同海表参数输入组合的3种对比实验来定量分析不同海表参数对LightGBM模型的影响。结果表明:所有海表参数对模型都有积极作用,但5个输入参数(SST、SSS、SSH、USSW和VSSW)的LightGBM模型反演效果最好,3个输入参数(SST、SSS和SSH)和2个输入参数(SST和SSH)的LightGBM模型次之。另外,与已有的极限梯度增强(extreme gradient boosting, XGBoost)反演模型相比,5个输入参数的LightGBM模型具有更好的模拟能力。 展开更多
关键词 高斯混合模型 轻量级梯度提升机 机器学习 海洋次表层温度
下载PDF
基于LightGBM的犯罪类型预测模型研究 被引量:2
19
作者 钱芳慧 蔡竞 《计算机仿真》 北大核心 2023年第1期25-30,共6页
深入挖掘犯罪类型发生的规律,有效进行犯罪活动的预防。基于轻量级梯度提升机算法,对犯罪数据集进行数据清洗整合等预处理,再对犯罪数据时空序列进行分析并提取犯罪数据特征,最后对特征进行编码,构建犯罪类型预测模型。针对中国某市及... 深入挖掘犯罪类型发生的规律,有效进行犯罪活动的预防。基于轻量级梯度提升机算法,对犯罪数据集进行数据清洗整合等预处理,再对犯罪数据时空序列进行分析并提取犯罪数据特征,最后对特征进行编码,构建犯罪类型预测模型。针对中国某市及美国旧金山犯罪数据集的犯罪类型预测结果表明,较随机森林、朴素贝叶斯、逻辑回归算法,其预测准确率最高分别高出5%、10%、12%。但特征维度有限,未能对犯罪案件进行更全面刻画。将时空信息作为特征向量,基于轻量级梯度提升机算法的模型能够进行较为准确高效的犯罪类型预测。 展开更多
关键词 犯罪类型 犯罪预测模型 犯罪特征分析 轻量级梯度提升机
下载PDF
基于VMD-LSTM-LightGBM的多特征短期电力负荷预测 被引量:20
20
作者 张未 余成波 +3 位作者 王士彬 李涛 何鑫 陈佳 《南方电网技术》 CSCD 北大核心 2023年第2期74-81,共8页
针对目前多特征电力负荷预测精度不准的问题,为充分挖掘电力负荷数据中的时序信息、天气信息等特征信息,提出了一种基于变分模态分解(variational mode decomposition,VMD)的长短期记忆(long short-term memory,LSTM)神经网络与轻量级... 针对目前多特征电力负荷预测精度不准的问题,为充分挖掘电力负荷数据中的时序信息、天气信息等特征信息,提出了一种基于变分模态分解(variational mode decomposition,VMD)的长短期记忆(long short-term memory,LSTM)神经网络与轻量级梯度提升机(light gradient boosting machine,LightGBM)预测模型,优化负荷数据非线性、非平稳、长记忆等问题,解决了多特征预测提取特征信息差的问题。该方法首先用VMD分解代表不同尺度的特征模态分量,降低了原始序列的不平稳度,同时分解的残差量代表负荷数据强非线性部分,通过特征性强的算法进行预测,将各模态分量通过LSTM的单特征预测,再将各个分量加入多特征利用LightGBM进行负荷预测。通过与目前多特征电力负荷预测模型进行对比实验,平均绝对误差(mean absolute error,MAE)值仅为其23%~73%,平均绝对百分比误差(mean absolute percentage error,MAPE)值能达到0.37%,具有更好的预测精度。 展开更多
关键词 多特征 变分模态分解(VMD) 长短期记忆(LSTM) 轻量级梯度提升机(lightgbm) 短期负荷预测 残差量
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部