In this work, we present novel trivalent lanthanide ions(Ln^3+)-based luminescent hybrid materials, in which the organic ligands are covalently grafted on the hectorite templates and the Ln^3+ ions can be well imm...In this work, we present novel trivalent lanthanide ions(Ln^3+)-based luminescent hybrid materials, in which the organic ligands are covalently grafted on the hectorite templates and the Ln^3+ ions can be well immobilized by the ligands through coordination bond. The hybrid materials exhibit tunable emission colors by varying the molar ratio of Eu^3+ to Tb^3+, and the one with Eu^3+:Tb^3+=1:1 exhibits excellent coordinate of(0.327, 0.328) located in the "white region" of the CIE 1931 chromaticity diagram(under300 nm UV illumination). These properties make the hybrid composites suitable for fabricating optoelectronic devices such as full-color displays and white LED.展开更多
基金the National Natural Science Foundation of China (Nos. 21171046, 21271060, and 21236001)the Tianjin Natural Science Foundation(No. 13JCYBJC18400)+1 种基金the Hebei Natural Science Foundation(No. B2016202147)Educational Committee of Hebei Province(Nos. 2011141,LJRC021)for financial support
文摘In this work, we present novel trivalent lanthanide ions(Ln^3+)-based luminescent hybrid materials, in which the organic ligands are covalently grafted on the hectorite templates and the Ln^3+ ions can be well immobilized by the ligands through coordination bond. The hybrid materials exhibit tunable emission colors by varying the molar ratio of Eu^3+ to Tb^3+, and the one with Eu^3+:Tb^3+=1:1 exhibits excellent coordinate of(0.327, 0.328) located in the "white region" of the CIE 1931 chromaticity diagram(under300 nm UV illumination). These properties make the hybrid composites suitable for fabricating optoelectronic devices such as full-color displays and white LED.