LED UV油墨利用LED光源进行光固化,光扩散粉可快速固化,在紫外光的照射下迅速发生聚合反应。将光扩散粉高分子结晶材料加入乳液合成的LED UV光固化树脂中,利用两者的有效结合,达到理想的光扩散。光固化工艺保证显示面板膜层更稳定,减少...LED UV油墨利用LED光源进行光固化,光扩散粉可快速固化,在紫外光的照射下迅速发生聚合反应。将光扩散粉高分子结晶材料加入乳液合成的LED UV光固化树脂中,利用两者的有效结合,达到理想的光扩散。光固化工艺保证显示面板膜层更稳定,减少原材料消耗,降低了生产成本。展开更多
A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed ...A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed by ferromagnetic thin films as in an inductive head for a magnetic data storage device. The magnetic field produced by the current exerts a magnetic force on the magnetic fluid and drives the fluid to cover the cell surface. The surface tension of the fluid provides a restoring force when the field is reduced. The actuation of the fluid is completed in about 12 ms for both thin-to-thick and thick-to-thin fluid film switchings by magnetic forces and surface tension forces, respectively. It was observed that the switching speed was almost independent of the driving current, and no considerable thermal effect were observed when driven by a current up to 100 mA.展开更多
Dust accumulation on photovoltaic (PV) panels degrades PV panels’ performance;leading to decreased power output and consequently high cost per generated kilowatt. Research addressing the severity of dust accumulation...Dust accumulation on photovoltaic (PV) panels degrades PV panels’ performance;leading to decreased power output and consequently high cost per generated kilowatt. Research addressing the severity of dust accumulation on PV panels has been ongoing since the 1940s, but proposed solutions have tended to increase the cost of PV systems either from oversizing or from cleaning the system. The objective of this work, therefore, is to design and implement a low-cost affordable automated PV panel dust cleaning system for use in rural communities of Sub-Saharan Africa (SSA);where financial resources are limited and significantly strained in meeting livelihood activities. Complete design and implementation details of a prototype system are provided for easy replication and capitalization on PV systems for sustainable energy needs. The system detects dust based on the innovative use of light-dependent resistors. Testing and observation of the system in operational mode reveal satisfactory performance;measured parameters quantify a power output increase of 33.76% as a result of cleaning dust off the PV panel used in the study.展开更多
文摘A new microfluidic microelectromechanical light modulator using a magnetic fluid is introduced. The optical reflection from the device is modulated by applying an electric current into an electrode, which is enclosed by ferromagnetic thin films as in an inductive head for a magnetic data storage device. The magnetic field produced by the current exerts a magnetic force on the magnetic fluid and drives the fluid to cover the cell surface. The surface tension of the fluid provides a restoring force when the field is reduced. The actuation of the fluid is completed in about 12 ms for both thin-to-thick and thick-to-thin fluid film switchings by magnetic forces and surface tension forces, respectively. It was observed that the switching speed was almost independent of the driving current, and no considerable thermal effect were observed when driven by a current up to 100 mA.
文摘Dust accumulation on photovoltaic (PV) panels degrades PV panels’ performance;leading to decreased power output and consequently high cost per generated kilowatt. Research addressing the severity of dust accumulation on PV panels has been ongoing since the 1940s, but proposed solutions have tended to increase the cost of PV systems either from oversizing or from cleaning the system. The objective of this work, therefore, is to design and implement a low-cost affordable automated PV panel dust cleaning system for use in rural communities of Sub-Saharan Africa (SSA);where financial resources are limited and significantly strained in meeting livelihood activities. Complete design and implementation details of a prototype system are provided for easy replication and capitalization on PV systems for sustainable energy needs. The system detects dust based on the innovative use of light-dependent resistors. Testing and observation of the system in operational mode reveal satisfactory performance;measured parameters quantify a power output increase of 33.76% as a result of cleaning dust off the PV panel used in the study.