The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and...The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). To further explore the role of OsPIL 11 in plant light signal transduction, a plant expression vector of OsPILll was constructed and introduced into tobacco. When grown under continuous red light, OsPILll-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPILll is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice.展开更多
We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for charac- teristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual ...We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for charac- teristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual repro- duction. The result showed that pre-illumination of 2-3h red light before darkness could induce sexualization of S. palmeriana, while the follow-up illumination of far red light could reverse the effect of red light, which is a featured reaction of phytochrome. The Southern Dot Blot was carried out to identify the type of phytochrome that induces the sexualization. The result also showed high homogeneity of DNA fragment of S. palmeriana with phyB, but phyA. This means the photoreceptor in the process of sexual reproduction of S. palmeriana is phytochrome B (phyB).展开更多
Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediate...Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediated blue light signaling. We report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent pathway. Light, irrespective of its quality, enhances HFR1 protein accumulation via promoting its stabilization. We demonstrate that HFR1 physically interacts with COP1 and that COP1 exhibits ubiquitin ligase activity toward HFR1 in vitro. In addition, we show that COP1 is required for degradation of HFR1 in vivo. Furthermore, plants overexpressing a C-terminal 161 amino acid fragment of HFR1 (CT161) display enhanced photomorphogenesis, suggesting an autonomous function of CT161 in promoting light signaling. This truncated HFR1 gene product is more stable than the full-length HFR1 protein in darkness, indicating that the COP1-interacting N-terminal portion of HFR1 is essential for COP1-mediated destabilization of HFR1. These results suggest that light enhances HFR1 protein accumulation by abrogating COP1-mediated degradation of HFR1, which is necessary and sufficient for promoting light signaling. Additionally, our results substantiate the E3 ligase activity of COP1 and its critical role in desensitizing light signaling.展开更多
Starch is a major storage carbohydrate in plants and is critical in crop yield and quality.Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues;however,the precise ...Starch is a major storage carbohydrate in plants and is critical in crop yield and quality.Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues;however,the precise molecular mechanisms governing this process remain largely unknown.In this study,we revealed that high red to far-red(high R:FR)light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes,whereas low R:FR light suppress these processes.Arabidopsis phytochrome B(phyB),the primary R and FR photoreceptor,was identified as a critical positive regulator in this process.Downstream of phyB,basic leucine zipper transcription factor ELONGATED HYPOCOTYL5(HY5)was found to enhance starch synthesis,whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs(PIF3,PIF4,and PIF5)inhibit starch synthesis in Arabidopsis leaves.Notably,HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS,SS3,and SS4,which leads to antagonistic regulation of their expression and,consequently,starch synthesis.Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions.Conversely,under low R:FR light,PIFs predominantly inhibit starch synthesis.This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation,shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.展开更多
Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling.Among these,RACK1A(Receptors for Activated C Kinase 1A)stands out as a multifaceted scaffold protein functioning as a central in...Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling.Among these,RACK1A(Receptors for Activated C Kinase 1A)stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways.However,the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear.Here,we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways.RACK1A interacts with PHYTOCHROME INTERACTING FACTOR(PIF)3,enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription.Furthermore,RACK1A associates with ELONGATED HYPOCOTYL 5(HY5)to repress HY5 biochemical activity toward target genes,ultimately contributing to hypocotyl elongation.In darkness,RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC(COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system.Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation,ensuring proper skoto-and photo-morphogenic development.展开更多
Plants demonstrate dynamic changes in molecular structures under fluctuating light conditions.Accumulating evidence suggests that light plays a vital role in plant growth and morphogenesis.In particular,light has a ro...Plants demonstrate dynamic changes in molecular structures under fluctuating light conditions.Accumulating evidence suggests that light plays a vital role in plant growth and morphogenesis.In particular,light has a role in the absorption and utilization of nutrients in plants.Despite significant progress in understanding the mechanism of nutrient acquisition and assimilation,how light affects and regulates ion uptake remains a question.Studies in model plants,Arabidopsis thaliana,suggest that light affects the nutrient utilization in roots through a complex regulatory network;nonetheless,the molecular mechanisms underlying the various effects of light on these processes in crop plants remain fragmentary.In this review,we discuss the light effects(light quality,light intensity,and photoperiod)on nutrient uptake and utilization in horticultural crops for optimizing crop productivity and increasing fertilizer use efficiency.展开更多
The signal processing circuits of position sensitive detector(PSD) with alternating light source are presented.The measuring device of PSD with alternating light source can effectively eliminate the interference made ...The signal processing circuits of position sensitive detector(PSD) with alternating light source are presented.The measuring device of PSD with alternating light source can effectively eliminate the interference made by light noise signal.展开更多
Plant growth is coordinately controlled by various environmental and hormonal signals,of which light and gibberellin(GA)signals are two critical factors with opposite effects on hypocotyl elongation.Although interacti...Plant growth is coordinately controlled by various environmental and hormonal signals,of which light and gibberellin(GA)signals are two critical factors with opposite effects on hypocotyl elongation.Although interactions between the light and GA signaling pathways have been studied extensively,the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified.Previously,we reported that ABA INSENSITIVE 4(ABI4)controls hypocotyl elongation through its regulation of cellelongation-related genes,but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown.In this study,we showthat promotion of hypocotyl elongation by GA is dependent on ABI4 activation.DELLAs interact directly with ABI4 and inhibit its DNA-binding activity.In turn,ABI4 combined with ELONGATED HYPOCOTYL 5(HY5),a key positive factor in light signaling,feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels.Taken together,our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.展开更多
Isoflavonoids,secondary metabolites derived from the phenylalanine pathway,are predominantly bio-synthesized in legumes,especially soybean(Glycine max).They are not only essential for plant responses to biotic and abi...Isoflavonoids,secondary metabolites derived from the phenylalanine pathway,are predominantly bio-synthesized in legumes,especially soybean(Glycine max).They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health.In this study,we report that light signaling controls isoflavonoid biosynthesis in soybean.Blue-light photoreceptors(GmCRY1s,GmCRY2s,GmPHOT1s,and GmPHOT2s)and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation,whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis.GmPHOT1s and GmPHOT2s stabilize GmSTF1/2,whereas GmCOP1b promotes the degradation of these two proteins in soybean.GmSTF1/2 regulate the expression of approximately 27.9%of the genes involved in soybean isoflavonoid biosynthesis,including GmPAL2.1,GmPAL2.3,and GmUGT2.They also repress the expression of GmBBX4,a negative regulator of isoflavonoid biosynthesis in soybean.In addition,GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis.Thus,GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis.Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.展开更多
We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulat...We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office(CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed.This is the first demonstration, to our knowledge, of a >20 Gbit∕s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.展开更多
基金supported by grants from the Chinese National Natural Science Foundation (Grant No. 30971744)the Chinese Ministry of Agriculture(Grant No. 2009ZX08001-029B)the Shandong Natural Science Funds for Distinguished Young Scholar,China (Grant No. JQ200911)
文摘The expression patterns of OsPILll, one of six putative phytochrome-interacting factors, were analyzed in different organs of transgenic tobacco (Nicotiana tabacum). The expression of OsPIL 11 was organ-specific and was regulated by leaf development, abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA). To further explore the role of OsPIL 11 in plant light signal transduction, a plant expression vector of OsPILll was constructed and introduced into tobacco. When grown under continuous red light, OsPILll-overexpressed transgenic tobacco exhibited shorter hypocotyls and larger cotyledons and leaves compared to wild-type seedlings. When grown under continuous far-red light, however, transgenic and wild-type seedlings showed similar phenotypes. These results indicate that OsPILll is involved in red light induced de-etiolation, but not in far-red light induced de-etiolation in transgenic tobacco, which lays the foundation for dissecting the function of OsPIL11 in phytochrome-mediated light signal transduction in rice.
基金Supported by National Natural Science Foundation of China (No. 39670076)
文摘We collected centric diatom Stephanopyxis palmeriana samples in coastal waters of Xiamen for charac- teristic red light/far red light (R/FR) phytochrome reactions to identify its photoreceptor in the course of sexual repro- duction. The result showed that pre-illumination of 2-3h red light before darkness could induce sexualization of S. palmeriana, while the follow-up illumination of far red light could reverse the effect of red light, which is a featured reaction of phytochrome. The Southern Dot Blot was carried out to identify the type of phytochrome that induces the sexualization. The result also showed high homogeneity of DNA fragment of S. palmeriana with phyB, but phyA. This means the photoreceptor in the process of sexual reproduction of S. palmeriana is phytochrome B (phyB).
文摘Arabidopsis seedlings undergo photomorphogenesis in the light and etiolation in the dark. HFR1, a bHLH transcription factor, is required for both phytochrome A (phyA)-mediated far-red and cryptochrome 1 (cry1)-mediated blue light signaling. We report that HFR1 is a short-lived protein in darkness and is degraded through a 26S proteasome-dependent pathway. Light, irrespective of its quality, enhances HFR1 protein accumulation via promoting its stabilization. We demonstrate that HFR1 physically interacts with COP1 and that COP1 exhibits ubiquitin ligase activity toward HFR1 in vitro. In addition, we show that COP1 is required for degradation of HFR1 in vivo. Furthermore, plants overexpressing a C-terminal 161 amino acid fragment of HFR1 (CT161) display enhanced photomorphogenesis, suggesting an autonomous function of CT161 in promoting light signaling. This truncated HFR1 gene product is more stable than the full-length HFR1 protein in darkness, indicating that the COP1-interacting N-terminal portion of HFR1 is essential for COP1-mediated destabilization of HFR1. These results suggest that light enhances HFR1 protein accumulation by abrogating COP1-mediated degradation of HFR1, which is necessary and sufficient for promoting light signaling. Additionally, our results substantiate the E3 ligase activity of COP1 and its critical role in desensitizing light signaling.
基金supported by the National Natural Science Foundation of China(32270263)the Shandong Provincial Natural Science Foundation(ZR2022QC095,ZR2020MC023,ZR2022MC019).
文摘Starch is a major storage carbohydrate in plants and is critical in crop yield and quality.Starch synthesis is intricately regulated by internal metabolic processes and external environmental cues;however,the precise molecular mechanisms governing this process remain largely unknown.In this study,we revealed that high red to far-red(high R:FR)light significantly induces the synthesis of leaf starch and the expression of synthesis-related genes,whereas low R:FR light suppress these processes.Arabidopsis phytochrome B(phyB),the primary R and FR photoreceptor,was identified as a critical positive regulator in this process.Downstream of phyB,basic leucine zipper transcription factor ELONGATED HYPOCOTYL5(HY5)was found to enhance starch synthesis,whereas the basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORs(PIF3,PIF4,and PIF5)inhibit starch synthesis in Arabidopsis leaves.Notably,HY5 and PIFs directly compete for binding to a shared G-box cis-element in the promoter region of genes encoding starch synthases GBSS,SS3,and SS4,which leads to antagonistic regulation of their expression and,consequently,starch synthesis.Our findings highlight the vital role of phyB in enhancing starch synthesis by stabilizing HY5 and facilitating PIFs degradation under high R:FR light conditions.Conversely,under low R:FR light,PIFs predominantly inhibit starch synthesis.This study provides insight into the physiological and molecular functions of phyB and its downstream transcription factors HY5 and PIFs in starch synthesis regulation,shedding light on the regulatory mechanism by which plants synchronize dynamic light signals with metabolic cues to module starch synthesis.
基金supported by grants from National Natural Science Foundation of China(32070292 to J.L.)Shenzhen Science and Technology Program(KQTD20190929173906742 to J.L.)+1 种基金The Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes(2019KSYS006 to J.L.)Scientific Research Funding for postdoctoral researchers staying at Shenzhen(K19227561,K21227504 to W.Z.).
文摘Plants deploy versatile scaffold proteins to intricately modulate complex cell signaling.Among these,RACK1A(Receptors for Activated C Kinase 1A)stands out as a multifaceted scaffold protein functioning as a central integrative hub for diverse signaling pathways.However,the precise mechanisms by which RACK1A orchestrates signal transduction to optimize seedling development remain largely unclear.Here,we demonstrate that RACK1A facilitates hypocotyl elongation by functioning as a flexible platform that connects multiple key components of light signaling pathways.RACK1A interacts with PHYTOCHROME INTERACTING FACTOR(PIF)3,enhances PIF3 binding to the promoter of BBX11 and down-regulates its transcription.Furthermore,RACK1A associates with ELONGATED HYPOCOTYL 5(HY5)to repress HY5 biochemical activity toward target genes,ultimately contributing to hypocotyl elongation.In darkness,RACK1A is targeted by CONSTITUTIVELY PHOTOMORPHOGENIC(COP)1 upon phosphorylation and subjected to COP1-mediated degradation via the 26 S proteasome system.Our findings provide new insights into how plants utilize scaffold proteins to regulate hypocotyl elongation,ensuring proper skoto-and photo-morphogenic development.
基金supported by the National Natural Science Foundation of China(Grant Nos.31825023,31950410555)the Key Research and Development Program of Zhejiang(Grant No.2018C0210).
文摘Plants demonstrate dynamic changes in molecular structures under fluctuating light conditions.Accumulating evidence suggests that light plays a vital role in plant growth and morphogenesis.In particular,light has a role in the absorption and utilization of nutrients in plants.Despite significant progress in understanding the mechanism of nutrient acquisition and assimilation,how light affects and regulates ion uptake remains a question.Studies in model plants,Arabidopsis thaliana,suggest that light affects the nutrient utilization in roots through a complex regulatory network;nonetheless,the molecular mechanisms underlying the various effects of light on these processes in crop plants remain fragmentary.In this review,we discuss the light effects(light quality,light intensity,and photoperiod)on nutrient uptake and utilization in horticultural crops for optimizing crop productivity and increasing fertilizer use efficiency.
文摘The signal processing circuits of position sensitive detector(PSD) with alternating light source are presented.The measuring device of PSD with alternating light source can effectively eliminate the interference made by light noise signal.
基金supported by the National Key Research and Development Program(2022YFF1001700,2020YFA0907600)the National Natural Sci-ence Foundation of China(31700204,32170258,U2004204)+3 种基金the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021JJLH0044)the Natural Science Foundation of Henan Province(222300420026)Central Plains Scholar(234000510005)the 111 Project(#D16014,Q.W.).
文摘Plant growth is coordinately controlled by various environmental and hormonal signals,of which light and gibberellin(GA)signals are two critical factors with opposite effects on hypocotyl elongation.Although interactions between the light and GA signaling pathways have been studied extensively,the detailed regulatory mechanism of their direct crosstalk in hypocotyl elongation remains to be fully clarified.Previously,we reported that ABA INSENSITIVE 4(ABI4)controls hypocotyl elongation through its regulation of cellelongation-related genes,but whether it is also involved in GA signaling to promote hypocotyl elongation is unknown.In this study,we showthat promotion of hypocotyl elongation by GA is dependent on ABI4 activation.DELLAs interact directly with ABI4 and inhibit its DNA-binding activity.In turn,ABI4 combined with ELONGATED HYPOCOTYL 5(HY5),a key positive factor in light signaling,feedback regulates the expression of the GA2ox GA catabolism genes and thus modulates GA levels.Taken together,our results suggest that the DELLA-ABI4-HY5 module may serve as a molecular link that integrates GA and light signals to control hypocotyl elongation.
基金supported by the Natural Science Foundation of Jiangsu for Distinguished Young Scholars (BK20211525)the National Natural Science Foundation of China (32270256,31970258)+2 种基金the Core Technology Development for Breeding Program of Jiangsu Province (JBGS-2021-014)the Jiangsu Collaborative Innovation Center for Modern Crop Production (to D.X.)Nanjing Agricultural University (start-up funding to D.X.).
文摘Isoflavonoids,secondary metabolites derived from the phenylalanine pathway,are predominantly bio-synthesized in legumes,especially soybean(Glycine max).They are not only essential for plant responses to biotic and abiotic stresses but also beneficial to human health.In this study,we report that light signaling controls isoflavonoid biosynthesis in soybean.Blue-light photoreceptors(GmCRY1s,GmCRY2s,GmPHOT1s,and GmPHOT2s)and the transcription factors GmSTF1 and GmSTF2 promote isoflavonoid accumulation,whereas the E3 ubiquitin ligase GmCOP1b negatively regulates isoflavonoid biosynthesis.GmPHOT1s and GmPHOT2s stabilize GmSTF1/2,whereas GmCOP1b promotes the degradation of these two proteins in soybean.GmSTF1/2 regulate the expression of approximately 27.9%of the genes involved in soybean isoflavonoid biosynthesis,including GmPAL2.1,GmPAL2.3,and GmUGT2.They also repress the expression of GmBBX4,a negative regulator of isoflavonoid biosynthesis in soybean.In addition,GmBBX4 physically interacts with GmSTF1 and GmSTF2 to inhibit their transcriptional activation activity toward target genes related to isoflavonoid biosynthesis.Thus,GmSTF1/2 and GmBBX4 form a negative feedback loop that acts downstream of photoreceptors in the regulation of isoflavonoid biosynthesis.Our study provides novel insights into the control of isoflavonoid biosynthesis by light signaling in soybean and will contribute to the breeding of soybean cultivars with high isoflavonoid content through genetic and metabolic engineering.
基金Ministry of Science and Technology,Taiwan(MOST)(MOST-106-2221-E-009-105-MY3)Aim for the Top University PlanMinistry of Education(MOE),Taiwan,China
文摘We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode(LD) based visible-light communication(VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office(CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed.This is the first demonstration, to our knowledge, of a >20 Gbit∕s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.