AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory ...AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.展开更多
A novel Sr2CulnO3S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type sem...A novel Sr2CulnO3S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type semiconductor character of the synthesized Sr2CuInO3 S was confirmed by Hall efficient measurement and Mott-Schottky plot analysis. First-principles density functional theory calculations (DFT) and electrochem ical measurements were performed to elucidate the electronic structure and the energy band locations. It was found that the as-synthesized Sr2CuInO3S photocatalyst has appreciate conduction and valence band positions for hydrogen and oxygen evolution, respectively. Photocat alytic hydrogen production experiments under a visible light irradiation (A〉420 nm) were carried out by loading different metal and metal-like cocatalysts on Sr2CuInO3S and Rh was found to be the best one among the tested ones.展开更多
A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of...A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874161 and 11474105)the Science and Technology Program of Guangdong Province,China(Grant Nos.2017B010127001 and 2015B010105011)+4 种基金the Education Department Project of Guangdong Province,China(Grant No.2017KZDXM022)the Science and Technology Project of Guangzhou City,China(Grant No.201607010246)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13064)the Science and Technology Project of Shenzhen City,China(Grant No.GJHZ20180416164721073)the Science and Technology Planning of Guangdong Province,China(Grant No.2015B010112002)
文摘AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.
基金financially supported by the National Natural Science Foundation of China(Grant No.21090341 and 21361140346)the National Basic Research Program(973 Program)of the Ministry of Science and Technology of China(Grant No.2014CB239401)
文摘A novel Sr2CulnO3S oxysulfide p-type semiconductor photocatalyst has been prepared by solid state reaction method and it exhibits intriguing visible light absorption properties with a bandgap of 2.3 eV. The p-type semiconductor character of the synthesized Sr2CuInO3 S was confirmed by Hall efficient measurement and Mott-Schottky plot analysis. First-principles density functional theory calculations (DFT) and electrochem ical measurements were performed to elucidate the electronic structure and the energy band locations. It was found that the as-synthesized Sr2CuInO3S photocatalyst has appreciate conduction and valence band positions for hydrogen and oxygen evolution, respectively. Photocat alytic hydrogen production experiments under a visible light irradiation (A〉420 nm) were carried out by loading different metal and metal-like cocatalysts on Sr2CuInO3S and Rh was found to be the best one among the tested ones.
文摘A fixed-geometry two-dimensional mixed-compression supersonic inlet with sweep-forward high-light and bleed slot in an inverted "X"-form layout was tested in a wind tunnel. Results indicate: (1) with increases of the free stream Mach number, the total pressure recovery decreases, while the mass flow ratio increases to the maximum at the design point and then decreases; (2) when the angle of attack, a, is less than 6°, the total pressure recovery of both side inlets tends to decrease, but, on the lee side inlet, its values are higher than those on the windward side inlet, and the mass flow ratio on lee side inlet increases first and then falls, while on the windward side it keeps declining slowly with the sum of mass flow on both sides remaining almost constant; (3) with the attack angle, a, rising from 6° to 9°, both total pressure recovery and mass flow ratio on the lee side inlet fall quickly, but on the windward side inlet can be observed decreases in the total pressure recovery and increases in the mass flow ratio; (4) by comparing the velocity and back pressure characterristics of the inlet with a bleed slot to those of the inlet without, it stands to reason that the existence of a bleed slot has not only widened the steady working range of inlet, but also made an enormous improvement in its performance at high Mach numbers. Besides, this paper also presents an example to show how this type of inlet is designed.