Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area mo...Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.展开更多
With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable...With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable development of composite industries in China. Based on a great deal of researches, this paper summarized and discussed some problems in using agro-residues as raw materials of composites, including raw material preparation, hot-pressing, bonding technology, preventing composite from going moldy. It is proposed that to manufacture the composite of rice straws or wheat straws, the isocayante resin is a suitable adhesive, and the appropriate technologies, bonding, and treatment measures are also needed.展开更多
Dental resin composites(DRCs)are popular materials for repairing caries or dental defect,requiring excellent properties to cope with the complex oral environment.Filler/resin interface interaction has a significant im...Dental resin composites(DRCs)are popular materials for repairing caries or dental defect,requiring excellent properties to cope with the complex oral environment.Filler/resin interface interaction has a significant impact on the physicochemical/biological properties and service life of DRCs.展开更多
The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the ...The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the composite relatively difficult.This phenomenon is mainly caused by exothermic heat reactions.The so-called Michaud's model has been largely used in the literature to reduce the gap between experience and simulation with regard to the effective prediction of the temperature cycle in these processes.In this work,another solution is proposed to simulate the curing process for thick composites,namely preheating the resin to activate the curing reaction before resin injection into the mold.A good agreement between the experiment and the simulation is found.Moreover,in order to minimize the thermal gradient in the final composite,the thermophysical properties of the fiber and the torque(temperature,time)of the Plate have been varied leading to interesting results.展开更多
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr...In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.展开更多
In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial p...In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.展开更多
The fracture and tribological evaluation of dental composite resin containing pre-polymerized particle fillers were investigated. Composite resins, e.g. metafil, silux plus, heliomolar and palfique estelite were selec...The fracture and tribological evaluation of dental composite resin containing pre-polymerized particle fillers were investigated. Composite resins, e.g. metafil, silux plus, heliomolar and palfique estelite were selected as specimens in order to evaluate the effects of pre-polymerized particle filler on the fracture and wear characteristics of composite resins. In the wear tests, a ball-on-flat wear test method was used. The friction coefficient of metafil was quite high. The wear resistance of silux plus and palfique estelite was better than that of metafil and heliomolar under the same experimental condition. The main wear mechanism of composite resins containing pre-polymerized particle fillers was an abrasive wear by brittle fracture of pre-polymerized particles and by debonding of fillers and matrix.展开更多
Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffr...Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffraction, thermogravimetric and differential scanning calorimetry, scanning electron microscope and limiting oxygen index(LOI) experiments. Effects of AACHH content on LOI of epoxy resins/AACHH composite and flame retardant mechanism were investigated and discussed. Results show that AACHH exhibites excellent flame-retardant properties in epoxy resin(EP). When the content of AACHH was 47.4%, the LOI of EP reached 32.2%. Moreover, the initial and terminal decomposition temperature of EP increased by 48 ℃ and 40 ℃, respectively. The flame retarded mechanism of AACHH is due to the synergic flame retardant effects of diluting, cooling, decomposition resisting and obstructing.展开更多
A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin tr...A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin transfer molding processes as composite matrix.The starting material salicylic acid can be obtained from natural sources.SCP as reactive phosphorus chloride is converted with a novolak,a novolak containing 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO)substituents or DOPO-hydroquinone to flame retardants with sufficient thermal stability and high char yield.Additionally,these flame retardants are soluble in the resin as well as react into the epoxy network.The determined thermal stability and glass transition temperatures of flame retarded neat resin samples as well as the interlaminar shear strength of corresponding carbon fiber reinforced composite materials showed the applicability of these flame retardants.Neat resin samples and composites were tested for their flammability by UL94 and/or flame-retardant performance by cone calorimetry.All tested flame retardants decrease the peak of heat release rate by up to 54%for neat resin samples.A combination of DOPO and SCP in one flame retardant shows synergistic effects in char formation and the mode of action adapts to neat resin or fiber-reinforced samples,so there is efficient flame retardancy in both cases.Therefore,a tailoring of SCP based flame retardants is possible.Additionally,these flame retardants efficiently reduce fiber degradation during combustion of carbon fiber-reinforced epoxy resins as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy.展开更多
Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measu...Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measure the effect of the light intensity of LED and QTH curing devices in relation to the light distances, on the hardness (KHN) of two light cure nano-resin composite. Material and Methods: The top and bottom surfaces of the two nanofill composite specimens were evaluated. Two LED and two QTH light curing devices were used at nine different distances. Light intensity was measured with two radiometers placed at these same distances from the curing tip. 360 pvc dies were prepared with circular cavity 3 mm in diameter and 2 mm thick. The tested materials were placed in each cavity. The different light curing distances were standardized by adding pvc spacers dies at different height matching the different distances. Top and bottom surface microhardness were evaluated with a Micro Hardness Tester in knoop hardness numbers (Kg/mm2). Data were statistically analyzed using: Three-way ANOVA, Tukey and Pearsons test. Results: It was revealed that there was a statistically significant difference in microhardness between the composites (p < 0.001), between the nine distances (p < 0.001) and between the four light curing devices (p < 0.001). Increasing the distance of the light source from composite resin, the light intensity and the microhardness values at the top and bottom surface decrease. LED light curing devices produced a greater microhardness results at the bottom surface of the specimens. The Filtek Ultimate nanocomposite (3 m) showed highest microhardness values on the top and bottom surfaces, polymerized with all four curing devices and all nine distances compared to Empress Direct nano composite (Ivoclar vivadent). Clinical significant: Even with high power LED curing light, the distance between the tip of the light source and the restoration surface should be as close as possible. In this study, Filtek Ultimate showed better results (highest microhardness values) than Empress Direct.展开更多
The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized...The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction;then,the feed liquid is filtered out using a solid-liquid separation procedure;finally,the material is dried and crushed.In order to evaluate its effects on the flammability of the EP,first,m-phenylenediamine is added to EP and vacuum defoamation is performed;then,EP is poured into a polytetrafluoroethylene mold,cooled to room temperature and demoulded;finally,the magnesium-based layered composite is added to EP,and its flame retardance is characterized by thermogravimetric analysis,limiting oxygen index and cone calorimetry.The X-ray diffraction patterns show that the baseline of magnesium-based layered composite is stable and the front shape is sharp and symmetrical when the molar ratio of magnesium to aluminium is 3.2:1;with the addition of magnesium-based layered composite,the initial pyrolysis temperature of EP of 10%,15%and 30%magnesium-based layered composite decreases to 318.2°C,317.9°C and 357.1°C,respectively.After the reaction,the amount of residual carbon increases to 0.1%,3.45%and 8.3%,and the limiting oxygen index increases by 28.3%,29.1%and 29.6%,respectively.The maximum heat release rate of cone calorimeter decreases gradually.The optimum molar ratio of Mg:Al for green synthesis is 3.2:1,and the NO_(3)-intercalated magnesium-based layered composite has the best flame retardance properties.展开更多
The most common process to manufacture advanced composites is the costly autoclave.One of the out-of-autoclave alternatives is the low-cost vacuum assisted resin infusion(VARI)which produces quality parts with less po...The most common process to manufacture advanced composites is the costly autoclave.One of the out-of-autoclave alternatives is the low-cost vacuum assisted resin infusion(VARI)which produces quality parts with less pollution.Epoxy resin is a widely used composite matrix resin,but its high flammability limits its use as interior composite parts for vehicles.The usual flame retardant for epoxy involves halogen,which is effective but has high smoke toxicity.As a result,halogen-free flame retardant epoxy resin systems become dominant.In this paper,phosphorus flame retardant was combined with benzoxazine(BOZ)to produce synergistic effect and achieve satisfactory flame retardance,as well as mechanical improvement for the epoxy resin.Differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),thermal gravitational analysis(TGA),the cone calorimeter(CC),and limiting oxygen index(LOI)were used to characterize the resins.The results showed significant improvement on the flame retardance of the synergistically modified resins.Specifically,the carbon residue increased by 113.6%,and the char thickness increased by 6 to 7 times,compared to those of the flammable benchmark resin.The LOI reached 33 and passed the UL94 V-0 vertical burn rating.The modified resins also exhibited adequate stability and viscosity suitable for VARI processes.展开更多
With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawat...With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.展开更多
Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics...Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.展开更多
Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanica...Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
The synthesis of reaction flame retarding unsaturated polyester resin and the flame retarding mechanism are investigated.By taking the synthesis flame retarding unsaturated polyester resin as a base material,glass fib...The synthesis of reaction flame retarding unsaturated polyester resin and the flame retarding mechanism are investigated.By taking the synthesis flame retarding unsaturated polyester resin as a base material,glass fibers as reinforced material,under the condition of adding graphite or carbon black respectively,the composites were manufactured.The flame retarding and antistatic properties are also studied.In the experiment,bromide-bearing flame retarding resin decomposed under a high temperature.Compound HBr was set out and retarded or stopped the flame.High concentration of HBr gas wall was formed between gas and solid phrases,which decreased flame.The results show that antistatic property of carbon black is higher than that of graphite.Adding a threshed value of 1% carbon black into composite,the antistatic property is at its highest value.展开更多
The ceramifiable polymer composite of MgO-Al_(2)O_(3)-SiO_(2)/boron phenolic resin(MAS/BPF)with 40wt%of inorganic fillers was calcined at 1200℃for different time to promote ceramification of ceramifiable composite an...The ceramifiable polymer composite of MgO-Al_(2)O_(3)-SiO_(2)/boron phenolic resin(MAS/BPF)with 40wt%of inorganic fillers was calcined at 1200℃for different time to promote ceramification of ceramifiable composite and improve heat resistance.The effects of different calcine time on the macroscopical morphology,mass loss,phase evolution,microstructure and chemical bond evolution of MAS/BPF composites were characterized by XRD,XPS,and SEM analyses.The experimental results reveal that the increase of calcine time result in the fewer holes,relatively denser and smoother top layer of MAS/BPF composites and protect the interior from deeper decomposition.The final residues of composites are amorphous carbon and C-O-Si-Al-Mg ceramic.And MAS/BPF composites show excellent mass stability,low shrinkage and self-supporting features after 2 h holding compared with BPF composites without 40wt%of inorganic fillers.展开更多
Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) compos...Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) composites to lower the formation temperature of eutectic liquid phase and promote the ceramification of ceramifiable composites. The effects of fluxing agents on the thermogravimetric properties, phase evolution, and microstructure evolution of MAS/BPF composites were characterized by TG-DSC, XRD and SEM analyses. The results reveal that the addition of a fluxing agent highly reduces the decomposition rate of MAS/BPF composites. Fluxing agents lower the formation temperatures of liquid phases of ceramifiable MAS/BPF composites obviously, and then promote the ceramification and densification process. The final residues of composites are ceramic surrounded by large amount of glass phases.展开更多
基金Supported by National Key Research and Development Project of China (Grant Nos.2018YFA0703300,52105300)National Natural Science Foundation of China (Grant No.52075215)+2 种基金Science and Technology Development Plan Project of Jilin Province of China (Grant No.20200201061JC)Science and Technology Research Project of Jilin Provincial Education Department of China (Grant No.JJKH20221021KJ)Changchun Municipal Key Research and Development Program of China (Grant No.21ZGN22)。
文摘Fibre reinforced polymer composites have become a new generation of structural materials due to their unique advantages such as high specific strength,designability,good dimensional stability and ease of large-area monolithic forming.However,the problem of interfacial bonding between the resin matrix and the fibres limits the direct use of reinforcing fibres and has become a central difficulty in the development of basalt fibre-epoxy composites.This paper proposes a solution for enhancing the strength of the fibre-resin interface using maize starch nanocrystals,which are highly yield and eco-friendly.Firstly,in this paper,corn starch nanocrystals(SNC)were prepared by hydrolysis,and were deposited on the surface of basalt fibers by electrostatic adsorption.After that,in order to maximize the modification effect of nano-starch crystals on the interface,the basalt fiber-epoxy resin composite samples were prepared by mixing in a pressureless molding method.The test results shown that the addition of basalt fibers alone led to a reduction in the strength of the sample.Deposition of 0.1 wt%SNC on the surface of basalt fibers can make the strength consistent with pure epoxy resin.When the adsorption amount of SNC reached 0.5 wt%,the tensile strength of the samples was 23.7%higher than that of pure epoxy resin.This is due to the formation of ether bond homopolymers between the SNC at the fibre-epoxy interface and the epoxy resin,which distorts the originally smooth interface,leading to increased stress concentration and the development of cracks.This enhances the binding of basalt fibers.The conclusions of this paper can provide an effective,simple,low-cost and non-polluting method of interfacial enhancement modification.
文摘With the urgent shortage of forest resource in China, using agro-residues as raw materials of composite become increasingly important. Agro-residue is the most potential fiber resource, which is helpful to sustainable development of composite industries in China. Based on a great deal of researches, this paper summarized and discussed some problems in using agro-residues as raw materials of composites, including raw material preparation, hot-pressing, bonding technology, preventing composite from going moldy. It is proposed that to manufacture the composite of rice straws or wheat straws, the isocayante resin is a suitable adhesive, and the appropriate technologies, bonding, and treatment measures are also needed.
基金the support from the National Natural Science Foundation of China(Grant nos.81921002,82201115)China Postdoctoral Science Foundation(no.2021M702166)the Innovative Research Team of High-level Local Universities in Shanghai,Oral and Maxillofacial Regeneration and Functional Restoration。
文摘Dental resin composites(DRCs)are popular materials for repairing caries or dental defect,requiring excellent properties to cope with the complex oral environment.Filler/resin interface interaction has a significant impact on the physicochemical/biological properties and service life of DRCs.
文摘The successful manufacture of thick composites is challenging since the highly exothermic nature of thermoset resins and limited temperature control make avoiding the onset of detrimental thermal gradients within the composite relatively difficult.This phenomenon is mainly caused by exothermic heat reactions.The so-called Michaud's model has been largely used in the literature to reduce the gap between experience and simulation with regard to the effective prediction of the temperature cycle in these processes.In this work,another solution is proposed to simulate the curing process for thick composites,namely preheating the resin to activate the curing reaction before resin injection into the mold.A good agreement between the experiment and the simulation is found.Moreover,in order to minimize the thermal gradient in the final composite,the thermophysical properties of the fiber and the torque(temperature,time)of the Plate have been varied leading to interesting results.
文摘In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%.
文摘In this paper, nanotechnology for the improvement of dental composite resins has been reviewed in the background of the existing shortcomings, focusing on the improvement for polymerization shrinkage, anti-bacterial properties and mechanical properties of composite resins. The results show that the use of nanotechnology and nano materials can be an effective method to improve the performance of dental composite resins in a various ways. At last, the paper also discusses the perspective about the dental composite resins.
文摘The fracture and tribological evaluation of dental composite resin containing pre-polymerized particle fillers were investigated. Composite resins, e.g. metafil, silux plus, heliomolar and palfique estelite were selected as specimens in order to evaluate the effects of pre-polymerized particle filler on the fracture and wear characteristics of composite resins. In the wear tests, a ball-on-flat wear test method was used. The friction coefficient of metafil was quite high. The wear resistance of silux plus and palfique estelite was better than that of metafil and heliomolar under the same experimental condition. The main wear mechanism of composite resins containing pre-polymerized particle fillers was an abrasive wear by brittle fracture of pre-polymerized particles and by debonding of fillers and matrix.
基金Funded by the Defense Preresearch Project of the Eleventh-Five-Year-Plan of China(No.51312040404)
文摘Flame retardant epoxy resins were prepared by a simple mixed method using ammonium aluminum carbonate hydroxy hydrate (AACHH) as a halogen-free flame retardant. The prepared samples were characterized by X-ray diffraction, thermogravimetric and differential scanning calorimetry, scanning electron microscope and limiting oxygen index(LOI) experiments. Effects of AACHH content on LOI of epoxy resins/AACHH composite and flame retardant mechanism were investigated and discussed. Results show that AACHH exhibites excellent flame-retardant properties in epoxy resin(EP). When the content of AACHH was 47.4%, the LOI of EP reached 32.2%. Moreover, the initial and terminal decomposition temperature of EP increased by 48 ℃ and 40 ℃, respectively. The flame retarded mechanism of AACHH is due to the synergic flame retardant effects of diluting, cooling, decomposition resisting and obstructing.
文摘A novel,versatile flame retardant substructure based on phosphorylated salicylic acid(SCP)is described and used in the synthesis of new flame retardants for HexFlowRTM6,a high-performance epoxy resin used in resin transfer molding processes as composite matrix.The starting material salicylic acid can be obtained from natural sources.SCP as reactive phosphorus chloride is converted with a novolak,a novolak containing 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide(DOPO)substituents or DOPO-hydroquinone to flame retardants with sufficient thermal stability and high char yield.Additionally,these flame retardants are soluble in the resin as well as react into the epoxy network.The determined thermal stability and glass transition temperatures of flame retarded neat resin samples as well as the interlaminar shear strength of corresponding carbon fiber reinforced composite materials showed the applicability of these flame retardants.Neat resin samples and composites were tested for their flammability by UL94 and/or flame-retardant performance by cone calorimetry.All tested flame retardants decrease the peak of heat release rate by up to 54%for neat resin samples.A combination of DOPO and SCP in one flame retardant shows synergistic effects in char formation and the mode of action adapts to neat resin or fiber-reinforced samples,so there is efficient flame retardancy in both cases.Therefore,a tailoring of SCP based flame retardants is possible.Additionally,these flame retardants efficiently reduce fiber degradation during combustion of carbon fiber-reinforced epoxy resins as observed by scanning electron microscopy and energy dispersive X-ray spectroscopy.
文摘Background: Effective polymerization of the composite resin is essential to obtain long term clinical success and has a great importance obtaining improved mechanical properties. The purpose of this study was to measure the effect of the light intensity of LED and QTH curing devices in relation to the light distances, on the hardness (KHN) of two light cure nano-resin composite. Material and Methods: The top and bottom surfaces of the two nanofill composite specimens were evaluated. Two LED and two QTH light curing devices were used at nine different distances. Light intensity was measured with two radiometers placed at these same distances from the curing tip. 360 pvc dies were prepared with circular cavity 3 mm in diameter and 2 mm thick. The tested materials were placed in each cavity. The different light curing distances were standardized by adding pvc spacers dies at different height matching the different distances. Top and bottom surface microhardness were evaluated with a Micro Hardness Tester in knoop hardness numbers (Kg/mm2). Data were statistically analyzed using: Three-way ANOVA, Tukey and Pearsons test. Results: It was revealed that there was a statistically significant difference in microhardness between the composites (p < 0.001), between the nine distances (p < 0.001) and between the four light curing devices (p < 0.001). Increasing the distance of the light source from composite resin, the light intensity and the microhardness values at the top and bottom surface decrease. LED light curing devices produced a greater microhardness results at the bottom surface of the specimens. The Filtek Ultimate nanocomposite (3 m) showed highest microhardness values on the top and bottom surfaces, polymerized with all four curing devices and all nine distances compared to Empress Direct nano composite (Ivoclar vivadent). Clinical significant: Even with high power LED curing light, the distance between the tip of the light source and the restoration surface should be as close as possible. In this study, Filtek Ultimate showed better results (highest microhardness values) than Empress Direct.
文摘The effects of a magnesium-based layered composite on the flammability of a phenolic epoxy resin(EP)are studied.In order to produce the required composite material,first,magnesium hydroxide,aluminum salt and deionized water are mixed into a reactor according to a certain proportion to induce a hydrothermal reaction;then,the feed liquid is filtered out using a solid-liquid separation procedure;finally,the material is dried and crushed.In order to evaluate its effects on the flammability of the EP,first,m-phenylenediamine is added to EP and vacuum defoamation is performed;then,EP is poured into a polytetrafluoroethylene mold,cooled to room temperature and demoulded;finally,the magnesium-based layered composite is added to EP,and its flame retardance is characterized by thermogravimetric analysis,limiting oxygen index and cone calorimetry.The X-ray diffraction patterns show that the baseline of magnesium-based layered composite is stable and the front shape is sharp and symmetrical when the molar ratio of magnesium to aluminium is 3.2:1;with the addition of magnesium-based layered composite,the initial pyrolysis temperature of EP of 10%,15%and 30%magnesium-based layered composite decreases to 318.2°C,317.9°C and 357.1°C,respectively.After the reaction,the amount of residual carbon increases to 0.1%,3.45%and 8.3%,and the limiting oxygen index increases by 28.3%,29.1%and 29.6%,respectively.The maximum heat release rate of cone calorimeter decreases gradually.The optimum molar ratio of Mg:Al for green synthesis is 3.2:1,and the NO_(3)-intercalated magnesium-based layered composite has the best flame retardance properties.
文摘The most common process to manufacture advanced composites is the costly autoclave.One of the out-of-autoclave alternatives is the low-cost vacuum assisted resin infusion(VARI)which produces quality parts with less pollution.Epoxy resin is a widely used composite matrix resin,but its high flammability limits its use as interior composite parts for vehicles.The usual flame retardant for epoxy involves halogen,which is effective but has high smoke toxicity.As a result,halogen-free flame retardant epoxy resin systems become dominant.In this paper,phosphorus flame retardant was combined with benzoxazine(BOZ)to produce synergistic effect and achieve satisfactory flame retardance,as well as mechanical improvement for the epoxy resin.Differential scanning calorimetry(DSC),dynamic mechanical analysis(DMA),thermal gravitational analysis(TGA),the cone calorimeter(CC),and limiting oxygen index(LOI)were used to characterize the resins.The results showed significant improvement on the flame retardance of the synergistically modified resins.Specifically,the carbon residue increased by 113.6%,and the char thickness increased by 6 to 7 times,compared to those of the flammable benchmark resin.The LOI reached 33 and passed the UL94 V-0 vertical burn rating.The modified resins also exhibited adequate stability and viscosity suitable for VARI processes.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Hebei Provincial Key Project of Science and Technology Research of(ZD20131027)
文摘With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite(GF/EPR) coupled with stainless steel 316 L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.
基金Supported by National Natural Science Foundation of China(Grant No.51375421)Key Project of Science and Technology Research of Hebei Province,China(ZD20131027)
文摘Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/rain. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.
基金Funded by the National Natural Science Foundation of China(No.5117 5308)the National Science and Technology Major Project of China(No.2012ZX04010032)
文摘Mo fibers were added to RMC with different mass ratios of resin and hardener to improve its mechanical properties. The influences of fiber surface state and hardener content on interface bonding strength and mechanical properties of RMC were studied, respectively. Furthermore, strain values of typical measuring points on samples of Mo fiber reinforced RMC(MFRRMC) under different loads were obtained by experiments and finite element analysis. The experimental results prove that scrap Mo fibers can improve interface bonding strength and mechanical properties of RMC better than new smooth Mo fibers because of the discharge pits randomly distributed on the surface of scrap fibers. With the decrease of hardener content, not only interface bonding strength between fiber and matrix, but also compression and flexural strength of MFRRMC increase firstly and then decrease. The properties are best while the mass ratio of resin and hardener reaches 4:1. It is indicated that finite element calculation data basically agree with experimental data by comparison of strain values on typical measuring points, which can provide an important intuitive reference for successive study on other mechanical properties of MFRRMC, validating the correctness of simulation method as well.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
文摘The synthesis of reaction flame retarding unsaturated polyester resin and the flame retarding mechanism are investigated.By taking the synthesis flame retarding unsaturated polyester resin as a base material,glass fibers as reinforced material,under the condition of adding graphite or carbon black respectively,the composites were manufactured.The flame retarding and antistatic properties are also studied.In the experiment,bromide-bearing flame retarding resin decomposed under a high temperature.Compound HBr was set out and retarded or stopped the flame.High concentration of HBr gas wall was formed between gas and solid phrases,which decreased flame.The results show that antistatic property of carbon black is higher than that of graphite.Adding a threshed value of 1% carbon black into composite,the antistatic property is at its highest value.
基金Funded by the Joint Fund of Ministry of Education for Equipment Pre-research(Nos.6141A02022250 and SAST2018-067)。
文摘The ceramifiable polymer composite of MgO-Al_(2)O_(3)-SiO_(2)/boron phenolic resin(MAS/BPF)with 40wt%of inorganic fillers was calcined at 1200℃for different time to promote ceramification of ceramifiable composite and improve heat resistance.The effects of different calcine time on the macroscopical morphology,mass loss,phase evolution,microstructure and chemical bond evolution of MAS/BPF composites were characterized by XRD,XPS,and SEM analyses.The experimental results reveal that the increase of calcine time result in the fewer holes,relatively denser and smoother top layer of MAS/BPF composites and protect the interior from deeper decomposition.The final residues of composites are amorphous carbon and C-O-Si-Al-Mg ceramic.And MAS/BPF composites show excellent mass stability,low shrinkage and self-supporting features after 2 h holding compared with BPF composites without 40wt%of inorganic fillers.
文摘Fluxing agents of zinc borate, antimony oxide, galss frit A and glass frit B, with different melting or softening point temperatures, were added into MgO-Al_2O_3-SiO_2/boron phenol formaldehyde resin(MAS/BPF) composites to lower the formation temperature of eutectic liquid phase and promote the ceramification of ceramifiable composites. The effects of fluxing agents on the thermogravimetric properties, phase evolution, and microstructure evolution of MAS/BPF composites were characterized by TG-DSC, XRD and SEM analyses. The results reveal that the addition of a fluxing agent highly reduces the decomposition rate of MAS/BPF composites. Fluxing agents lower the formation temperatures of liquid phases of ceramifiable MAS/BPF composites obviously, and then promote the ceramification and densification process. The final residues of composites are ceramic surrounded by large amount of glass phases.