Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamp...Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.展开更多
Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-bas...Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.展开更多
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat...Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.展开更多
Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the pres...Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.展开更多
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro...The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.展开更多
We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an...We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments.展开更多
Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS reco...Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.展开更多
The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coa...The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole ...InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.展开更多
The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances ...The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.展开更多
InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron block...InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).展开更多
AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory ...AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.展开更多
We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs...We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.展开更多
We report an effective enhancement in light extraction of Ga N-based light-emitting diodes(LEDs) with an Al-doped Zn O(AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 in...We report an effective enhancement in light extraction of Ga N-based light-emitting diodes(LEDs) with an Al-doped Zn O(AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent throughpore anodic aluminum oxide(AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 m A and 56% at 100 m A compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage.展开更多
The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field ...The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement in optical performance compared with the design of a conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of the LED could be one of the main reasons for these improvements.展开更多
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the ...A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.展开更多
By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode wit...By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode with a maximum external quantum efficiency of 6.19% and a stable lifetime at a high initial current density of 0.0375 A/cm2. We demonstrate that the change in the thicknesses of organic layers affects the operating voltage and luminous efficiency greater than the lifetime. The lifetime being independent of thickness is beneficial in achieving high-quality full-colour display devices and white lighting sources with multi-emitters.展开更多
A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were ...A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.展开更多
Two soluble tetraalkyl-substituted zinc phthalocyanines(ZnPcs)for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes(OLEDs)are presented in this work.The ...Two soluble tetraalkyl-substituted zinc phthalocyanines(ZnPcs)for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes(OLEDs)are presented in this work.The holeblocking properties of these Zn Pc layers slowed the hole injection process into the Alq3 emissive layer greatly and thus reduced the production of unstable cationic Alq3(Alq3^+)species.This led to the enhanced brightness and efficiency when compared with the corresponding properties of OLEDs based on the popular poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)buffer layer.Furthermore,because of the high thermal and chemical stabilities of these Zn Pcs,a nonaqueous film fabrication process was realized together with improved charge balance in the OLEDs and enhanced OLED lifetimes.展开更多
基金funded by the China Agriculture Research System(CARS-15-16).
文摘Background Light is a critical factor in plant growth and development,particularly in controlled environments.Light-emitting diodes(LEDs)have become a reliable alternative to conventional high pressure sodium(HSP)lamps because they are more efficient and versatile in light sources.In contrast to well-known specialized LED light spectra for vegetables,the appropriate LED lights for crops such as cotton remain unknown.Results In this growth chamber study,we selected and compared four LED lights with varying percentages(26.44%–68.68%)of red light(R,600–700 nm),combined with other lights,for their effects on growth,leaf anatomy,and photosynthesis of cotton seedlings,using HSP lamp as a control.The total photosynthetic photon flux density(PPFD)was(215±2)μmol·m-2·s-1 for all LEDs and HSP lamp.The results showed significant differences in all tested parameters among lights,and the percentage of far red(FR,701–780 nm)within the range of 3.03%–11.86%was positively correlated with plant growth(characterized by leaf number and area,plant height,stem diameter,and total biomass),palisade layer thickness,photosynthesis rate(Pn),and stomatal conductance(Gs).The ratio of R/FR(4.445–11.497)negatively influenced the growth of cotton seedlings,and blue light(B)suppressed stem elongation but increased palisade cell length,chlorophyll content,and Pn.Conclusion The LED 2 was superior to other LED lights and HSP lamp.It had the highest ratio of FR within the total PPFD(11.86%)and the lowest ratio of R/FR(4.445).LED 2 may therefore be used to replace HPS lamp under controlled environments for the study of cotton at the seedling stage.
基金supported by National Natural Science Foundation of China(Grant Nos.52272166,22205214,and 12204427).
文摘Ag-In-Ga-S(AIGS)quantum dots(QDs)have recently attracted great interests due to the outstanding optical properties and eco-friendly components,which are considered as an alternative replacement for toxic Pb-and Cd-based QDs.However,enormous attention has been paid to how to narrow their broadband spectra,ignoring the application advantages of the broadband emission.In this work,the AIGS QDs with controllable broad green-red dual-emission are first reported,which is achieved through adjusting the size distribution of QDs by controlling the nucleation and growth of AIGS crystals.Resultantly,the AIGS QDs exhibit broad dual-emission at green-and red-band evidenced by photoluminescence(PL)spectra,and the PL relative intensity and peak position can be finely adjusted.Furthermore,the dual-emission is the intrinsic characteristics from the difference in confinement effect of large particles and tiny particles confirmed by temperature-dependent PL spectra.Accordingly,the AIGS QDs(the size consists of 17 nm and 3.7 nm)with 530 nm and 630 nm emission could successfully be synthesized at 220°C.By combining the blue light-emitting diode(LED)chips and dual-emission AIGS QDs,the constructed white light-emitting devices(WLEDs)exhibit a continuous and broad spectrum like natural sunlight with the Commission Internationale de l’Eclairage(CIE)chromaticity coordinates of(0.33,0.31),a correlated color temperature(CCT)of 5425 K,color rendering index(CRI)of 90,and luminous efficacy of radiation(LER)of 129 lm/W,which indicates that the AIGS QDs have huge potential for lighting applications.
基金This work is supported by the National Natural Science Foundation of China(No.61904151)the National Key Research and Development Program of China(No.2021YFA1200803)the Joint Research Funds of the Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-020).
文摘Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices.
基金supported by the Science and Technology Development Fund,Macao SAR(File no.FDCT-0082/2021/A2,0010/2022/AMJ,006/2022/ALC)UM's research fund(File no.MYRG2022-00241-IAPME,MYRGCRG2022-00009-FHS)+2 种基金the research fund from Wuyi University(EF38/IAPME-XGC/2022/WYU)the Natural Science Foundation of China(61935017,62175268)Science,Technology and Innovation Commission of Shenzhen Municipality(Project Nos.JCYJ20220530113015035,JCYJ20210324120204011,and KQTD2015071710313656).
文摘Metal halide perovskites,particularly the quasi-two-dimensional perovskite subclass,have exhibited considerable potential for next-generation electroluminescent materials for lighting and display.Nevertheless,the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices.In this study,we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide.The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and,on the other hand,can screen the charged defects at the grain boundaries with potassium cations.This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films,leading to a significant enhancement of photoluminescence quantum yield to near-unity values(95%).Meanwhile,the potassium bromide treatment promoted the growth of homogeneous and smooth film,facilitating the charge carrier injection in the devices.Consequently,the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of~21%and maximum luminance of~60,000 cd m^(-2).This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
基金supported by the Science and Technology Program of Shenzhen(Grant Nos.SGDX20201103095607022 and JCYJ20210324095003011)supported by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province.
文摘The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.
基金the National Natural Science Foundation of China(Grant No.62104085)the Innovation/Entrepreneurship Program of Jiangsu Province,China(Grant No.JSSCTD202146)。
文摘We investigate the polarization-induced doping in the gradient variation of Al composition in the pAl_(0.75)Ga_(0.25)N/Al_xGa_(1-x)N hole injection layer(HIL)for deep ultraviolet light-emitting diodes(DUV-LEDs)with an ultrathin p-GaN(4 nm)ohmic contact layer capable of emitting 277 nm.The experimental results show that the external quantum efficiency(EQE)and wall plug efficiency(WPE)of the structure graded from 0.75 to 0.55 in the HIL reach 5.49%and 5.04%,which are improved significantly by 182%and 209%,respectively,compared with the structure graded from 0.75 to 0.45,exhibiting a tremendous improvement.Both theoretical speculations and simulation results support that the larger the difference between 0.75 and x in the HIL,the higher the hole concentration that should be induced;thus,the DUV-LED has a higher internal quantum efficiency(IQE).Meanwhile,as the value of x decreases,the absorption of the DUV light emitted from the active region by the HIL is enhanced,reducing the light extraction efficiency(LEE).The IQE and LEE together affect the EQE performance of DUV-LEDs.To trade off the contradiction between the enhanced IQE and decreased LEE caused by the decrease in Al composition,the Al composition in the HIL was optimized through theoretical calculations and experiments.
基金conducted within the state assignment of the Ministry of Science and Higher Education for universities(Project No.FZRR-2023-0009).
文摘Herein,a physical and mathematical model of the voltage−current characteristics of a p−n heterostructure with quantum wells(QWs)is prepared using the Sah−Noyce−Shockley(SNS)recombination mechanism to show the SNS recombination rate of the correction function of the distribution of QWs in the space charge region of diode configuration.A comparison of the model voltage−current characteristics(VCCs)with the experimental ones reveals their adequacy.The technological parameters of the structure of the VCC model are determined experimentally using a nondestructive capacitive approach for determining the impurity distribution profile in the active region of the diode structure with a profile depth resolution of up to 10Å.The correction function in the expression of the recombination rate shows the possibility of determining the derivative of the VCCs of structures with QWs with a nonideality factor of up to 4.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3602703,2022YFB3606504,and 2022YFB3602903)National Natural Science Foundation of China(No.62122034)+3 种基金Guangdong University Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.2017KSYS007)Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting(No.ZDSYS201707281632549)Shenzhen Science and Technology Program(No.JCYJ20220818100411025)Shenzhen Development and Reform Commission Project(No.XMHT20220114005)。
文摘The performance of inverted quantum-dot light-emitting diodes(QLEDs)based on solution-processed hole transport layers(HTLs)has been limited by the solvent-induced damage to the quantum dot(QD)layer during the spin-coating of the HTL.The lack of compatibility between the HTL’s solvent and the QD layer results in an uneven surface,which negatively impacts the overall device performance.In this work,we develop a novel method to solve this problem by modifying the QD film with 1,8-diaminooctane to improve the resistance of the QD layer for the HTL’s solvent.The uniform QD layer leads the inverted red QLED device to achieve a low turn-on voltage of 1.8 V,a high maximum luminance of 105500 cd/m2,and a remarkable maximum external quantum efficiency of 13.34%.This approach releases the considerable potential of HTL materials selection and offers a promising avenue for the development of high-performance inverted QLEDs.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos. 2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No. 2010U1-D00191)
文摘InGaN-based light-emitting diodes with p-GaN and p-A1GaN hole injection layers are numerically studied using the APSYS simulation software. The simulation results indicate that light-emitting diodes with p-A1GaN hole injection layers show superior optical and electrical performance, such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-A1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.
基金Project supported by the Special Strategic Emerging Industries of Guangdong Province,China(Grant No.2012A080304006)the Major Scientific and Technological Projects of Zhongshan City,Guangdong Province,China(Grant No.2014A2FC204)the Forefront of Technology Innovation and Key Technology Projects of Guangdong Province,China(Grant Nos.2014B010121001 and 2014B010119004)
文摘The AlGaN-based deep ultraviolet light-emitting diodes(LED) with double electron blocking layers(d-EBLs) on both sides of the active region are investigated theoretically. They possess many excellent performances compared with the conventional structure with only a single electron blocking layer, such as a higher recombination rate, improved light output power and internal quantum efficiency(IQE). The reasons can be concluded as follows. On the one hand, the weakened electrostatic field within the quantum wells(QWs) enhances the electron–hole spatial overlap in QWs, and therefore increases the probability of radioactive recombination. On the other hand, the added n-AlGaN layer can not only prevent holes from overflowing into the n-side region but also act as another electron source, providing more electrons.
基金Project supported by the National Natural Science Foundation of China (Grant No.50602018)the Science and Technology Program of Guangdong Province,China (Grant Nos.2010B090400456,2009B011100003,and 2010A081002002)the Science and Technology Program of Guangzhou City,China (Grant No.2010U1-D00191)
文摘InGaN based light-emitting diodes (LEDs) with different electron blocking layers have been numerically investi- gated using the APSYS simulation software. It is found that the structure with a p-AlInN electron blocking layer showes improved light output power, lower current leakage, and smaller efficiency droop. Based on numerical simulation and analysis, these improvements of the electrical and optical characteristics are mainly attributed to the efficient electron blocking in the InGaN/GaN multiple quantum wells (MQWs).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874161 and 11474105)the Science and Technology Program of Guangdong Province,China(Grant Nos.2017B010127001 and 2015B010105011)+4 种基金the Education Department Project of Guangdong Province,China(Grant No.2017KZDXM022)the Science and Technology Project of Guangzhou City,China(Grant No.201607010246)the Program for Changjiang Scholars and Innovative Research Team in Universities of China(Grant No.IRT13064)the Science and Technology Project of Shenzhen City,China(Grant No.GJHZ20180416164721073)the Science and Technology Planning of Guangdong Province,China(Grant No.2015B010112002)
文摘AlGaN-based ultraviolet light-emitting diodes(UV-LEDs) have attracted considerable interest due to their wide range of application fields. However, they are still suffering from low light out power and unsatisfactory quantum efficiency.The utilization of polarization-doped technique by grading the Al content in p-type layer has demonstrated its effectiveness in improving LED performances by providing sufficiently high hole concentration. However, too large degree of grading through monotonously increasing the Al content causes strains in active regions, which constrains application of this technique, especially for short wavelength UV-LEDs. To further improve 340-nm UV-LED performances, segmentally graded Al content p-Al_xGa_(1-x)N has been proposed and investigated in this work. Numerical results show that the internal quantum efficiency and output power of proposed structures are improved due to the enhanced carrier concentrations and radiative recombination rate in multiple quantum wells, compared to those of the conventional UV-LED with a stationary Al content AlGaN electron blocking layer. Moreover, by adopting the segmentally graded p-Al_xGa_(1-x)N, band bending within the last quantum barrier/p-type layer interface is effectively eliminated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60906022 and 60676051)the Natural Science Foundation of Tianjin,China (Grant No. 10JCYBJC01100)+2 种基金the Scientific Developing Foundation of Tianjin Education Commission, China (Grant No. 2011ZD02)the Jiangsu Provincial Natural Science Development Foundation for University, China (Grant No. 09KJB140006)the Tianjin Natural Science Council (Grant No. 10SYSYJC28100)
文摘We demonstrate high current efficiency of a blue fluorescent organic light-emitting diode (OLED) by using the charge control layers (CCLs) based on Alq3 . The CCLs that are inserted into the emitting layers (EMLs) could impede the hole injection and facilitate the electron transport, which can improve the carrier balance and further expand the exciton generation region. The maximal current efficiency of the optimal device is 5.89 cd/A at 1.81 mA/cm2 , which is about 2.19 times higher than that of the control device (CD) without the CCL, and the maximal luminance is 19.660 cd/m2 at 12V. The device shows a good color stability though the green light emitting material Alq3 is introduced as the CCL in the EML, but it has a poor lifetime due to the formation of cationic Alq3 species.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61204049 and 51402366)Guangdong Natural Science Foundation,China(Grant No.S2012040007363)Foundation for Distinguished Young Talents in Higher Education of Guangdong,China(Grant Nos.2012LYM 0058 and2013LYM 0022)
文摘We report an effective enhancement in light extraction of Ga N-based light-emitting diodes(LEDs) with an Al-doped Zn O(AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent throughpore anodic aluminum oxide(AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 m A and 56% at 100 m A compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61176043)the Fund for Strategic and Emerging Industries of Guangdong Province, China (Grant No. 2010A081002005)the Project of Combination of Production and Research Guided by Ministry of Education, China (Grant No. 2010B090400192)
文摘The optical and physical properties of an InGaN light-emitting diode (LED) with a specific design of a staggered AlGaN electron-blocking layer (EBL) are investigated numerically in detail. The electrostatic field distribution, energy band, carrier concentration, electroluminescence (EL) intensity, internal quantum efficiency (IQE), and the output power are simulated. The results reveal that this specific design has a remarkable improvement in optical performance compared with the design of a conventional LED. The lower electron leakage current, higher hole injection efficiency, and consequently mitigated efficiency droop are achieved. The significant decrease of electrostatic field at the interface between the last barrier and the EBL of the LED could be one of the main reasons for these improvements.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1034004,50825603,and 51210011)the Fundamental Research Funds for the Central Universities,China(Grant No.12QX14)
文摘A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band.
基金Project supported by the Science Fund of Science and Technology Commission of Shanghai Municipality,China (GrantNo. 10dz1140502)the Innovation Key Project of Education Commission of Shanghai Municipality,China (Grant No. 12ZZ091)the National Natural Science Foundation of China (Grant Nos. 61006005 and 61136003)
文摘By using p-bis(p - N, N-diphenyl-aminostyryl)benzene doped 2-tert-butyl-9, 10-bis-β-naphthyl)-anthracene as an emitting layer, we fabricate a high-efficiency and long-lifetime blue organic light emitting diode with a maximum external quantum efficiency of 6.19% and a stable lifetime at a high initial current density of 0.0375 A/cm2. We demonstrate that the change in the thicknesses of organic layers affects the operating voltage and luminous efficiency greater than the lifetime. The lifetime being independent of thickness is beneficial in achieving high-quality full-colour display devices and white lighting sources with multi-emitters.
基金Project supported by the National Natural Science Foundation of China(Grant No.11204009)the Natural Science Foundation of Beijing,China(Grant No.4142005)
文摘A new epitaxial structure of AlGaInP-based light-emitting diode(LED) with a 0.5-μm GaP window layer was fabricated. In addition, indium tin oxide(ITO) and localized Cr deposition beneath the p-pad electrode were used as the current spreading layer and the Schottky current blocking layer(CBL), respectively. The results indicated that ITO and the Schottky CBL improve the total light extraction efficiency by relieving the current density crowding beneath the p-pad electrode. At the current of 20 mA, the light output power of the novel LED was 40% and 19% higher than those of the traditional LED and the new epitaxial LED without CBL. It was also found that the novel LED with ITO and CBL shows better thermal characteristics.
基金Project supported by the Shenzhen Personal Maker Project,China(Grant No.GRCK2017082316173208)the Shenzhen Overseas High-level Talents Innovation Plan of Technical Innovation,China(Grant No.KQJSCX20180323140712012)the Special Funds for the Development of Strategic Emerging Industries in Shenzhen,China(Grant No.JCJY20170818154457845)
文摘Two soluble tetraalkyl-substituted zinc phthalocyanines(ZnPcs)for use as anode buffer layer materials in tris(8-hydroxyquinoline)aluminum(Alq3)-based organic light-emitting diodes(OLEDs)are presented in this work.The holeblocking properties of these Zn Pc layers slowed the hole injection process into the Alq3 emissive layer greatly and thus reduced the production of unstable cationic Alq3(Alq3^+)species.This led to the enhanced brightness and efficiency when compared with the corresponding properties of OLEDs based on the popular poly-(3,4-ethylenedioxythiophene):poly(styrene sulfonate)(PEDOT:PSS)buffer layer.Furthermore,because of the high thermal and chemical stabilities of these Zn Pcs,a nonaqueous film fabrication process was realized together with improved charge balance in the OLEDs and enhanced OLED lifetimes.