Energy transfer processes between two aggregates in a coupled chromophoric-pigment (protein) system are studied via the standard master equation approach. Each pigment of the two aggregates is modeled as a two-level...Energy transfer processes between two aggregates in a coupled chromophoric-pigment (protein) system are studied via the standard master equation approach. Each pigment of the two aggregates is modeled as a two-level system. The excitation energy is assumed to be transferred from the donor aggregate to the acceptor aggregate. The model can be used to theoretically simulate many aspects of light-harvesting complexes (LHCs). By applying the real bio-parameters of photosynthesis, we numerically investigate the efficiency of energy transfer (EET) between the two aggregates in terms of some factors, e.g., the initial coherence of the donor aggregate, the coupling strengthes between the two aggregates and between different pigments, and the effects of noise from the environment. Our results provide evidence for that the actual numbers of pigments in the chromophoric tings of LHCs should be the optimum parameters for a high EET. We also give a detailed analysis of the effects of noise on the EET.展开更多
In this paper, we use a nonlinear decohering quantum model to study the initial step of photosynthesis which is an ultrafast transfer process of absorption the sunlight by light-harvesting complexes and electronic exc...In this paper, we use a nonlinear decohering quantum model to study the initial step of photosynthesis which is an ultrafast transfer process of absorption the sunlight by light-harvesting complexes and electronic excitation transfer to the reaction center(RC). In this decohering model, the Hamiltonian of the system commutes with the systemenvironment interaction. We take B850 ring of light-harvesting complex II(LH-II) in purple bacteria as an example to calculate the efficiency of the energy transfer as a function of time. We find that the environmental noise can make the LH-II have stable energy transfer efficiency over a long time. This is to say that the environmental noise which is the decohering source has advantage of the energy transfer in the process of photosynthesis.展开更多
In this work, we designed and synthesized cationic carbon dots(CDs) with a size distribution of 1.6–3.7 nm, which exhibited dark blue fluorescence in the aqueous solution. Based on its excellent luminescence properti...In this work, we designed and synthesized cationic carbon dots(CDs) with a size distribution of 1.6–3.7 nm, which exhibited dark blue fluorescence in the aqueous solution. Based on its excellent luminescence properties, we used it as an energy donor to construct a sequential artificial light-harvesting system(LHS) by employing the energy-matching dyes eosin Y disodium salt(EY) and sulforhodamine101(SR101), which could regulate the white light emission(Commission Internationale de l'Eclairage(CIE) coordinate:(0.30, 0.31)) with the energy transfer efficiency(ΦET) of 53.9% and 20.0%. Moreover, a single-step artificial LHS with white light emission(0.32, 0.28) can be constructed directly using CDs and dye solvent 43(SR) with ΦETand antenna effect(AE) of 48.8% and 6.5, respectively. More importantly,CDs-based artificial LHSs were firstly used in photocatalytic of α-bromoacetophenone, with a yield of90%. This work not only provides a new strategy for constructing CDs-based LHSs, but also opens up a new application for further applying the energy harvested in CDs-based LHSs to the field of the aqueous solution photocatalysis.展开更多
The energy relaxation and kinetic evolution of transient spectra of bacteriochloro- phylls (BChls) in light-harvesting complex LH2 from Rb. sphaeroides 601 were investigated using femtosecond pump-probe technique. Upo...The energy relaxation and kinetic evolution of transient spectra of bacteriochloro- phylls (BChls) in light-harvesting complex LH2 from Rb. sphaeroides 601 were investigated using femtosecond pump-probe technique. Upon 783 nm excitation, the energy at B800 BChls ex-periences an intramolecular redistribution with 0.35 ps time constant before transferring to B850 BChls. With tuning the excitation wavelength, the dynamical evolution of excited BChls was clearly observed, which indicates an obvious competition between the ground state bleaching and excited state absorption (ESA) of BChls involved and an isosbestic point near 818 nm, and also demonstrates that from the lower electronic excited state of B800 BChls to the higher exci-tonic state of B850 BChls is an efficient routine for energy transfer. The excitation energy in higher excitonic states of B850 BChls relaxes rapidly to the next lowest excitonic state by inter-conversion, delocalization to adjacent molecular, populating the lowest excitonic state and the change of molecular conformation.展开更多
1 Results In the coordination system by using complexation with organic ligand, the ff emission of lanthanide(Ⅲ) (Ln(Ⅲ)) is induced the excitation energy transfer form the organic chromophore under the light-irradia...1 Results In the coordination system by using complexation with organic ligand, the ff emission of lanthanide(Ⅲ) (Ln(Ⅲ)) is induced the excitation energy transfer form the organic chromophore under the light-irradiation. However, there are not so much number of reports to discuss the energy relaxation mechanism in such complexes with Ln(Ⅲ). Recently, we succeeded firstly to estimate the rate constant of the energy transfer between the ligand and Ln(Ⅲ) in Pr(Ⅲ)-phenanthroline analogs[1]. Here, we will di...展开更多
A green mutant was obtained among the chemically induced mutants of Rhodobacter sphaeroides 601 (RS601) and named GM309. A blue shift of 20 nm of the carotenoid absorption spectrum was found in the light-harvesting co...A green mutant was obtained among the chemically induced mutants of Rhodobacter sphaeroides 601 (RS601) and named GM309. A blue shift of 20 nm of the carotenoid absorption spectrum was found in the light-harvesting complex II (LH2) of GM309. Different from LH2 of RS601, it was found that the carotenoids in GM309-LH2 changed to be neurosporene by mutation. Neurosporene lacks a conjugate double bond, compared with the spheroidene in RS601-LH2 which has ten conjugate double bonds. As shown by absorption and circular dichroism spectroscopy, the overall structure of GM309-LH2 is little affected by this change. From fluorescence emission spectra, it is found that GM309-LH2 can transfer energy from carotenoids to Bchl-B850 without any change in efficiency. But the efficiency of energy transfer from B800 to B850 in GM309-LH2 is decreased to be 42% of that of the native. This work would provide a novel method to investigate the mechanism of excitation energy transfer in LH2.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11174233)the National Basic Research Program of China(Grant No.2011CB311807)
文摘Energy transfer processes between two aggregates in a coupled chromophoric-pigment (protein) system are studied via the standard master equation approach. Each pigment of the two aggregates is modeled as a two-level system. The excitation energy is assumed to be transferred from the donor aggregate to the acceptor aggregate. The model can be used to theoretically simulate many aspects of light-harvesting complexes (LHCs). By applying the real bio-parameters of photosynthesis, we numerically investigate the efficiency of energy transfer (EET) between the two aggregates in terms of some factors, e.g., the initial coherence of the donor aggregate, the coupling strengthes between the two aggregates and between different pigments, and the effects of noise from the environment. Our results provide evidence for that the actual numbers of pigments in the chromophoric tings of LHCs should be the optimum parameters for a high EET. We also give a detailed analysis of the effects of noise on the EET.
基金Supported by the Research Start-up Foundation for Talents of Northwest A&F University of China under Grant Nos.Z111021106 and Z111021307
文摘In this paper, we use a nonlinear decohering quantum model to study the initial step of photosynthesis which is an ultrafast transfer process of absorption the sunlight by light-harvesting complexes and electronic excitation transfer to the reaction center(RC). In this decohering model, the Hamiltonian of the system commutes with the systemenvironment interaction. We take B850 ring of light-harvesting complex II(LH-II) in purple bacteria as an example to calculate the efficiency of the energy transfer as a function of time. We find that the environmental noise can make the LH-II have stable energy transfer efficiency over a long time. This is to say that the environmental noise which is the decohering source has advantage of the energy transfer in the process of photosynthesis.
基金the financial support from the National Natural Science Foundation of China (Nos.52205210 and 22002075)the Natural Science Foundation of Shandong Province (Nos.ZR2020MB018 and ZR2022QE033)。
文摘In this work, we designed and synthesized cationic carbon dots(CDs) with a size distribution of 1.6–3.7 nm, which exhibited dark blue fluorescence in the aqueous solution. Based on its excellent luminescence properties, we used it as an energy donor to construct a sequential artificial light-harvesting system(LHS) by employing the energy-matching dyes eosin Y disodium salt(EY) and sulforhodamine101(SR101), which could regulate the white light emission(Commission Internationale de l'Eclairage(CIE) coordinate:(0.30, 0.31)) with the energy transfer efficiency(ΦET) of 53.9% and 20.0%. Moreover, a single-step artificial LHS with white light emission(0.32, 0.28) can be constructed directly using CDs and dye solvent 43(SR) with ΦETand antenna effect(AE) of 48.8% and 6.5, respectively. More importantly,CDs-based artificial LHSs were firstly used in photocatalytic of α-bromoacetophenone, with a yield of90%. This work not only provides a new strategy for constructing CDs-based LHSs, but also opens up a new application for further applying the energy harvested in CDs-based LHSs to the field of the aqueous solution photocatalysis.
基金the National Natural Science Foundation of China(Grant No.10274013)State Key Basic Research and Development Plan(Grant No.G1998010100)+1 种基金Natural Science Foundation of Henan Educational Committee(Grant No.20011400003)the Key Natural Science Foundation of Henan University.
文摘The energy relaxation and kinetic evolution of transient spectra of bacteriochloro- phylls (BChls) in light-harvesting complex LH2 from Rb. sphaeroides 601 were investigated using femtosecond pump-probe technique. Upon 783 nm excitation, the energy at B800 BChls ex-periences an intramolecular redistribution with 0.35 ps time constant before transferring to B850 BChls. With tuning the excitation wavelength, the dynamical evolution of excited BChls was clearly observed, which indicates an obvious competition between the ground state bleaching and excited state absorption (ESA) of BChls involved and an isosbestic point near 818 nm, and also demonstrates that from the lower electronic excited state of B800 BChls to the higher exci-tonic state of B850 BChls is an efficient routine for energy transfer. The excitation energy in higher excitonic states of B850 BChls relaxes rapidly to the next lowest excitonic state by inter-conversion, delocalization to adjacent molecular, populating the lowest excitonic state and the change of molecular conformation.
文摘1 Results In the coordination system by using complexation with organic ligand, the ff emission of lanthanide(Ⅲ) (Ln(Ⅲ)) is induced the excitation energy transfer form the organic chromophore under the light-irradiation. However, there are not so much number of reports to discuss the energy relaxation mechanism in such complexes with Ln(Ⅲ). Recently, we succeeded firstly to estimate the rate constant of the energy transfer between the ligand and Ln(Ⅲ) in Pr(Ⅲ)-phenanthroline analogs[1]. Here, we will di...
文摘A green mutant was obtained among the chemically induced mutants of Rhodobacter sphaeroides 601 (RS601) and named GM309. A blue shift of 20 nm of the carotenoid absorption spectrum was found in the light-harvesting complex II (LH2) of GM309. Different from LH2 of RS601, it was found that the carotenoids in GM309-LH2 changed to be neurosporene by mutation. Neurosporene lacks a conjugate double bond, compared with the spheroidene in RS601-LH2 which has ten conjugate double bonds. As shown by absorption and circular dichroism spectroscopy, the overall structure of GM309-LH2 is little affected by this change. From fluorescence emission spectra, it is found that GM309-LH2 can transfer energy from carotenoids to Bchl-B850 without any change in efficiency. But the efficiency of energy transfer from B800 to B850 in GM309-LH2 is decreased to be 42% of that of the native. This work would provide a novel method to investigate the mechanism of excitation energy transfer in LH2.