The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
This article takes traditional residential buildings in Ningxia region as the starting point,and through field research and data analysis,demonstrates the specific elements of the spatial composition of traditional re...This article takes traditional residential buildings in Ningxia region as the starting point,and through field research and data analysis,demonstrates the specific elements of the spatial composition of traditional residential buildings and the common forms of courtyard space.The study summarizes the regional cultural characteristics of traditional residential buildings in the region,laying a foundation for subsequent research and providing some reference basis.展开更多
In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual en...In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual energy consumption and the overall thermal transfer value(OTTV)of a baseline residential building prescribed in the Chinese codes and the HK-BEAM are evaluated and compared by the energy budget approach.The results show that in the Chinese codes,the OTTV of the residential building is lower,but the annual energy consumption and the cooling load are higher than those in the HK-BEAM.The annual energy use difference amounts to 13.4%.All the compliance criteria except the ventilation rate and the equipment power in the Chinese codes are set higher than those in the HK-BEAM.However,the compliance criteria of the ventilation rate and the equipment power,especially the ventilation rate,result in much energy consumption,which ultimately induces a high energy budget for residential buildings.展开更多
Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity ind...Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.展开更多
Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analys...Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.展开更多
The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The sp...The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption展开更多
This paper reviews recent research on the demand flexibility of residential buildings in regard to definitions,flexible loads,and quantification methods.A systematic distinction of the terminology is made,including th...This paper reviews recent research on the demand flexibility of residential buildings in regard to definitions,flexible loads,and quantification methods.A systematic distinction of the terminology is made,including the demand flexibility,operation flexibility,and energy flexibility of buildings.A comprehensive definition of building demand flexibility is proposed based on an analysis of the existing definitions.Moreover,the flexibility capabilities and operation characteristics of the main residential flexible loads are summarized and compared.Models and evaluation indicators to quantify the flexibility of these flexible loads are reviewed and summarized.Current research gaps and challenges are identified and analyzed as well.The results indicate that previous studies have focused on the flexibility of central air conditioning,electric water heaters,wet appliances,refrigerators,and lighting,where the proportion of studies focusing on each of these subjects is 36.7%,25.7%,14.7%,9.2%,and 8.3%,respectively.These flexible loads are different in running modes,usage frequencies,seasons,and capabilities for shedding,shifting,and modulation,while their response characteristics are not yet clear.Furthermore,recommendations are given for the application of white-,black-,and grey-box models for modeling flexible loads in different situations.Numerous static flexibility evaluation indicators that are based on the aspects of power,temporality,energy,efficiency,economics,and the environment have been proposed in previous publications,but a consensus and standardized evaluation framework is lacking.This review can help readers better understand building demand flexibility and learn about the characteristics of different residential flexible loads,while also providing suggestions for future research on the modeling techniques and evaluation metrics of residential building demand flexibility.展开更多
The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential...The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region.展开更多
Regional culture of the Qinling Mountains shows distinct features since it was born in the local outstanding ecological environment, study on local architecture is significant for the dominant expression of regional c...Regional culture of the Qinling Mountains shows distinct features since it was born in the local outstanding ecological environment, study on local architecture is significant for the dominant expression of regional culture, protection of local environment, and echoing with the theme of ecological civilization construction. This paper, on the basis of the mutual infl uence and evolution of regional culture and style of local residential buildings, explored the reasons for the weakening of local architectural style, and specified the signifi cance of promoting local style of the living environment. By studying the infl uence of local natural environment and humanistic environment on architectural style along the northern foot of the Qinling Mountains, the paper explored the expression of regional culture in residential buildings, with Xian Garden(Xi'an Yuanzi) as an example, and aimed at giving useful help to the dominant expression of regional culture in modern residential buildings.展开更多
By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different...By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.展开更多
Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features o...Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.展开更多
It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energ...It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energy consumption by applying energy storage. Besides, the research used composite solar panel, waste- based inorganic foam materials, and polystyrene board as construction materials and integrated energy collection, living environment and farming by energy storage system. It is notable that the research would reduce pollution on environment caused by residential buildings, which coincides with national economy development and en- ergy strategy, promoting construction material industry development, with high social and economic benefits.展开更多
In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to ...In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.展开更多
In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the deci...In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.展开更多
Building defect is an issue in existing buildings that needs urgent tackling to prevent further problems. This study assessed the defects in concrete elements in residential buildings of 30 years and above in the Onit...Building defect is an issue in existing buildings that needs urgent tackling to prevent further problems. This study assessed the defects in concrete elements in residential buildings of 30 years and above in the Onitsha metropolis of Anambra State, Nigeria. Data collection instruments in the study include structured questionnaire, interviews, visual inspection/observations, archival records, recordings, photographs;and non-destructive testing of the concrete elements in an existing building in the study area. The population of this study constituted of the construction registered professionals and the existing buildings in study area. The sample for the study was based on the calculated sample size using Taro Yamani Formula. A total of 158 registered professionals were sampled from the population of 260. The questionnaires were purposively distributed to the registered professionals up to the required sample sizes of 158 and 129 questionnaires were properly filled and returned. The study used the SPSS and Microsoft Excel to analyze the data. The results were analyzed in percentages and figures using descriptive statistics and presented in the form of pie charts and tables. The finding of the study revealed that the causes and effects of structural defects on the concrete elements in existing buildings in the study area according to the rating are;exposed/corrosion of the embedded metals, faulty workmanship, overload and impacts, chemical attack, freeze-thaw deterioration, fire/heat, restraint to volume change. The visual observation revealed that the structural elements are characterized by heavy defects such as deep vertical, horizontal and diagonal cracks, exposed/ corrosion of the embedded metals, spalling of the concrete slabs. The existence of defects in the concrete members led to the low compressive strength of the concrete elements and the structural instability of the existing buildings as revealed by the non-destructive test. The non-destructive test result revealed that most of the tested concrete elements have low compressive strength value and such were remarked poor as they did not satisfy the assumed value. Essentially, the study concluded by recommending that regular monitoring, inspections and non-destructive testing of concrete elements should be conducted on existing aged and defected buildings to detect the structural stability of the buildings;and it is imperative to evacuate occupants from heavy structurally deteriorated and defected buildings since most of them have lost their residual design life span and ability to sustain imposed loads.展开更多
Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for ...Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.展开更多
The proliferation of multi-family residential building in Anambra State of Nigeria due to increasing demand without recourse to performance has broughtconcerns about the adequacy and sustainability of this housing typ...The proliferation of multi-family residential building in Anambra State of Nigeria due to increasing demand without recourse to performance has broughtconcerns about the adequacy and sustainability of this housing type.This study therefore,assessed the adequacy and sustainability performance of multi-family residential buildings in urban areas of Anambra State.The study sampled the opinions of 384 households living in multi-family residential buildings through a questionnaire survey.We conducted data analysis based on 214 responses that were useful for analysis.The study found that internal and building component variables and supporting neigh-borhood variables were adequate,but the surrounding environment variables were inadequate based on Mean Score Index.However,based on Sustainability Performance Index,the occupant sperceived social sustainability performance of the buildings as satisfactory,while environmental and economic sustainability performance were perceived as fairly satisfactory.The Pearson correlation coefficient result further established that adequacy of internal and building component variables was significantly and positively related to the residents'perceived social sustainability performance.Adequacy of the surrounding environmental variables was also found to be positively and significantly related to the residents'perceived environmental sustainability performance,whereas adequacy of supporting neighborhood facilities was found to be negatively and significantly related to the residents’perceived economic sustainability performance.This sug-gested that investors and owners of multi-family residential buildings should direct more efforts towards improving the surrounding environment to supplements other facilities and increase the economic benefit of the renters or occupiers with increasing economic sustainability performance in terms of value for money.展开更多
The winter in the severe cold area of China is long and cold. The mean outdoor temperature is about-10. 0 ℃ during the winter in Harbin,while the indoor air temperature is often above24 ℃. How does the indoor enviro...The winter in the severe cold area of China is long and cold. The mean outdoor temperature is about-10. 0 ℃ during the winter in Harbin,while the indoor air temperature is often above24 ℃. How does the indoor environment influence human thermal comfort and adaptation in such an overheated environment?A combined approach of spot-reading measurements and occupant interview s w as adopted in nine residential buildings of five communities during the heating period in 2013-2014. Tw enty residents w ere chosen as respondents. Totally 308 valid questionnaires w ere collected. The heating periods w ere separated into three phases based on the outdoor temperature.The results show that the mean indoor air temperatures in theearly-,mid-and late-heating periods w ere 23. 6 ℃,24. 3 ℃and 25. 0 ℃,respectively,w hich w ere larger than or close to the upper limit recommended by thermal comfort standards, and slightly higher than the related thermal neutral temperatures. With the heating process,the mean clothing insulation of residents decreased. Opening w indow s and reducing clothing w ere mainly taken by the residents to adapt to the overheated environment.The thermal neutral temperature has an upw ard tendency w ith the increasing indoor air temperature. On the other hand,overheating in residential buildings w ould make residents open w indow s,w hich may cause thermal discomfort and energy w aste. Therefore,the low er limit of the comfort indoor air temperature range should be suggested as the heating temperature,w hich could fully arouse residents' adaptation and achieve sustainable building designs.展开更多
In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this s...In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
基金The National Social Science Foundation of the Arts Key Project“Research on the Architecture Art and Folk Culture of Chinese Traditional Houses on the Land“Silk Road”(Number:18AH008)”Project entrusted by the Ministry of Culture and Tourism:“Yellow River Culture and Chinese Civilization:Rescue Research on Shaanxi Traditional Residential Buildings and Residential Folk Culture” (No.21HH02)Shaanxi Province High-level Talents Special Support Program.
文摘This article takes traditional residential buildings in Ningxia region as the starting point,and through field research and data analysis,demonstrates the specific elements of the spatial composition of traditional residential buildings and the common forms of courtyard space.The study summarizes the regional cultural characteristics of traditional residential buildings in the region,laying a foundation for subsequent research and providing some reference basis.
基金The Natural Science Foundation of Tianjin(No.08JCYBJC26800)
文摘In order to benchmark the energy efficiency standards for residential buildings in China,the Hong Kong building environment assessment method(HK-BEAM)is chosen as the compliance criteria for assessment.The annual energy consumption and the overall thermal transfer value(OTTV)of a baseline residential building prescribed in the Chinese codes and the HK-BEAM are evaluated and compared by the energy budget approach.The results show that in the Chinese codes,the OTTV of the residential building is lower,but the annual energy consumption and the cooling load are higher than those in the HK-BEAM.The annual energy use difference amounts to 13.4%.All the compliance criteria except the ventilation rate and the equipment power in the Chinese codes are set higher than those in the HK-BEAM.However,the compliance criteria of the ventilation rate and the equipment power,especially the ventilation rate,result in much energy consumption,which ultimately induces a high energy budget for residential buildings.
基金Supported by Research Fund of the 11th 5year Sci Tech National Support Project
文摘Cooling panels are increasingly used in domestic residential buildings.To provide medium temperature cold water for the cooling panel,and dehumidify the indoor air simultaneously,a new kind of temperature-humidity independent control air-conditioning unit was developed for single residential house by utilizing multi-variable technology.First,the supply air temperature was studied to determine the proper supply air flow rate for the humidity control.Then,the energy consumption of different temperature-humidity independent control systems was studied.The analysis indicates that unity evaporating temperature can be used to handle the moisture load and sensible heat load in two evaporators.So the unit scheme was put forward.Two evaporators were used to produce medium temperature water and dry air separately,and electric expansion valves were used to control the refrigerant distribution between the two evaporators.Then,experimental work was carried out to investigate the influence of compressor frequency,refrigerant distribution on the dehumidification capacity,energy efficiency and refrigeration capacity.In the end,the paper concludes that both compressor frequency and refrigerant distribution can control the dehumidification capacity,but the former influences the EER more than the latter,while the latter influences the refrigeration capacity more than the former.We can find a proper running point at certain sensible and latent cooling load by adjusting both compressor frequency and electric expansion valve.The energy consumption of this kind of unit was estimated and compared with present room air conditioners,which shows that it can save about 41% cooling energy consumption.
基金Project(50838009) supported by the National Natural Science Foundation of ChinaProjects(2006BAJ02A09,2006BAJ01A13-2) supported by the National Key Technologies R & D Program of China
文摘Carbon emissions mainly result from energy consumption. Carbon emissions inevitably will increase to some extent with economic expansion and rising energy consumption. We introduce a gray theory of quantitative analysis of the energy consumption of residential buildings in Chongqing,China,on the impact of carbon emission factors. Three impacts are analyzed,namely per capita residential housing area,domestic water consumption and the rate of air conditioner ownership per 100 urban households. The gray prediction model established using the Chongqing carbon emission-residential building energy consumption forecast model is sufficiently accurate to achieve a measure of feasibility and applicability.
基金The National Natural Science Foundation of China(No.51608426,51590913)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(No.(2014)1685)
文摘The heating load simulation models of the residential buildings in Lhasa are established for enhancing the space organization’s adaptability to climate and radiation and improving its energy saving performance.The space organization items a e analyzed for both the existing buildings without insulation and new buildings with good insulation.The items include orientation design,south a d north balcony design,the north and south partition wall’s position design,storey height design and window-wall ratio design.Simulation results show that orientation is the key design element for energy saving design,and adverse orientation can obviouslyincrease heating energy consumption;south and north balconies can reduce winter heating energy consumption;partition walls move to the north,which means that the south room’s big depth design leads to less heating energy consumption,but the effect is not inconspicuous;smaier storey height results in less heating load.For the existing buildings,the window-wall ratio of south side has a balance point for energy saving design in the calculation condition.For the new buildings with good insulation,enlarging the south window-wal ratio can continuously reduce heating energy consumption,but the energy saving rate between models gets smaier.The heating energy consumption comparison study between the common model and optimal space design model demonstrates that the energy saving design can significantly reduce heating energy consumption
基金the financial support of the Science and Technology Innovation Program of Hunan Province(2020RC5003)the research and application of key technologies for zero-energy buildings based on distributed energy storage and air conditioning demand response(2020-K-165)+1 种基金the Technology Innovation Program of Hunan Province(2017XK2015)the Technology Innovation Program of Hunan Province(2020RC2017)。
文摘This paper reviews recent research on the demand flexibility of residential buildings in regard to definitions,flexible loads,and quantification methods.A systematic distinction of the terminology is made,including the demand flexibility,operation flexibility,and energy flexibility of buildings.A comprehensive definition of building demand flexibility is proposed based on an analysis of the existing definitions.Moreover,the flexibility capabilities and operation characteristics of the main residential flexible loads are summarized and compared.Models and evaluation indicators to quantify the flexibility of these flexible loads are reviewed and summarized.Current research gaps and challenges are identified and analyzed as well.The results indicate that previous studies have focused on the flexibility of central air conditioning,electric water heaters,wet appliances,refrigerators,and lighting,where the proportion of studies focusing on each of these subjects is 36.7%,25.7%,14.7%,9.2%,and 8.3%,respectively.These flexible loads are different in running modes,usage frequencies,seasons,and capabilities for shedding,shifting,and modulation,while their response characteristics are not yet clear.Furthermore,recommendations are given for the application of white-,black-,and grey-box models for modeling flexible loads in different situations.Numerous static flexibility evaluation indicators that are based on the aspects of power,temporality,energy,efficiency,economics,and the environment have been proposed in previous publications,but a consensus and standardized evaluation framework is lacking.This review can help readers better understand building demand flexibility and learn about the characteristics of different residential flexible loads,while also providing suggestions for future research on the modeling techniques and evaluation metrics of residential building demand flexibility.
基金Project(51325803)supported by the National Science Foundation for Distinguished Young Scholars of ChinaProject(2020M673489)supported by China Postdoctoral Science FoundationProject(2020-K-196)supported by the Science and Technology Project of Ministry of Housing and Urban-Rural Development,China。
文摘The study aims to investigate the thermal comfort requirements in residential buildings and to establish an adaptive thermal comfort model in the cold zone of China.A year-long field study was conducted in residential buildings in Xi’an,China.A total of 2069 valid questionnaires,along with indoor environmental parameters were obtained.The results indicated occupants’thermal comfort requirements varied with seasons.The neutral temperatures were 17.9,26.1(highest),25.2,and 17.4℃(lowest),and preferred temperatures were 23.2,25.6(highest),24.8,and 22.4℃(lowest),respectively for spring,summer,autumn,and winter.The neutral temperature and preferred temperature in autumn are close to the neutral temperature in summer,while the neutral temperature and preferred temperature in spring are close to that in winter.Besides,the 80%and 90%acceptable temperature ranges,adaptive thermal comfort models,and thermal comfort zones for each season were established.Human’s adaptability is related to his/her thermal experience of the current season and the previous season.Therefore,compared with the traditional year-round adaptive thermal comfort model,seasonal models can better reflect seasonal variations of human adaptation.This study provides fundamental knowledge of the thermal comfort demand for people in this region.
基金Sponsored by Key Research Projects of Humanistic and Social Sciences of Henan Provincial Department of Education(2013-ZD-002)Research Projects of Humanistic and Social Sciences of Henan Provincial Department of Education(2013-GH-141)
文摘Regional culture of the Qinling Mountains shows distinct features since it was born in the local outstanding ecological environment, study on local architecture is significant for the dominant expression of regional culture, protection of local environment, and echoing with the theme of ecological civilization construction. This paper, on the basis of the mutual infl uence and evolution of regional culture and style of local residential buildings, explored the reasons for the weakening of local architectural style, and specified the signifi cance of promoting local style of the living environment. By studying the infl uence of local natural environment and humanistic environment on architectural style along the northern foot of the Qinling Mountains, the paper explored the expression of regional culture in residential buildings, with Xian Garden(Xi'an Yuanzi) as an example, and aimed at giving useful help to the dominant expression of regional culture in modern residential buildings.
文摘By testing indoor and outdoor thermal environment of residential buildings that apply 4 mostused heating ways in Hantai District,Hanzhong City,this paper explored the indoor thermal environment conditions of different heating ways,to provide references for choosing a suitable heating way in the local area.
文摘Building energy saving needs solar energy, but the promotion of solar energy has to be integrated with the constructions. Through analyzing the energy-saving significance of solar energy, and the status and features of it, this paper has discussed the solar energy and building integration technology and application in the residential building, and explored a new way and thinking for the close combination of the solar technology and residence.
文摘It is researched that rural residential buildings in Heilongjieng consume high energy and the living environment is poor. The research aimed at designing low-carbon and energy-saving buildings in order to reduce energy consumption by applying energy storage. Besides, the research used composite solar panel, waste- based inorganic foam materials, and polystyrene board as construction materials and integrated energy collection, living environment and farming by energy storage system. It is notable that the research would reduce pollution on environment caused by residential buildings, which coincides with national economy development and en- ergy strategy, promoting construction material industry development, with high social and economic benefits.
文摘In the present article thermal and electrical energy consumptions for different types of buildings are analyzed. The latitude and longitude of the researched area are defined 59?00'N and 26?00'E. According to K?ppen climate classification the area is located in warm summer continental climate. The study consist 40 residential, 7 educational and 44 public buildings. Three years data for each building type among 2006-2011 was used. Several detailed energy balances are presented for apartment buildings. In addition the different ways of domestic hot water preparation are analyzed for apartment buildings. The school buildings average consumption values are represented in study. Also valuable information of measured electrical energy consumption balance for a new office building is presented. Finally there is included the energy consumption analysis of public buildings.
文摘In the urban residential building stock, a major proportion is constituted by low-rise individual buildings. In addition to cost, quality and duration, energy consumed for the project needs to be accounted in the decision making process. Minimizing the cost of construction without compromising on the architectural and structural requirements is the primary objective of the residential buildings of stake-holders, especially the owners. The choice of structural system and the materials used for construction play a crucial role in this effort. This means that the use of expensive and/or voluminous materials such as cement, steel, masonry etc. is optimized. This could lead to significant reduction in embodied energy as well, if the choice of the structural system is prudently made. In this paper, an attempt has been made to quantify the cost and embodied energy benefits for a low-rise residential building by choosing two different structural systems, namely moment resisting framed (MRF) construction system and the partly load-bearing (PLB) system. The influence of choice of materials, contributing to reduction of cost and/or energy is discussed. It is clearly noticed that, when the structural system is re-configured as a PLB system from the existing MRF system there is significant reduction in cost and embodied energy without changing the architectural form.
文摘Building defect is an issue in existing buildings that needs urgent tackling to prevent further problems. This study assessed the defects in concrete elements in residential buildings of 30 years and above in the Onitsha metropolis of Anambra State, Nigeria. Data collection instruments in the study include structured questionnaire, interviews, visual inspection/observations, archival records, recordings, photographs;and non-destructive testing of the concrete elements in an existing building in the study area. The population of this study constituted of the construction registered professionals and the existing buildings in study area. The sample for the study was based on the calculated sample size using Taro Yamani Formula. A total of 158 registered professionals were sampled from the population of 260. The questionnaires were purposively distributed to the registered professionals up to the required sample sizes of 158 and 129 questionnaires were properly filled and returned. The study used the SPSS and Microsoft Excel to analyze the data. The results were analyzed in percentages and figures using descriptive statistics and presented in the form of pie charts and tables. The finding of the study revealed that the causes and effects of structural defects on the concrete elements in existing buildings in the study area according to the rating are;exposed/corrosion of the embedded metals, faulty workmanship, overload and impacts, chemical attack, freeze-thaw deterioration, fire/heat, restraint to volume change. The visual observation revealed that the structural elements are characterized by heavy defects such as deep vertical, horizontal and diagonal cracks, exposed/ corrosion of the embedded metals, spalling of the concrete slabs. The existence of defects in the concrete members led to the low compressive strength of the concrete elements and the structural instability of the existing buildings as revealed by the non-destructive test. The non-destructive test result revealed that most of the tested concrete elements have low compressive strength value and such were remarked poor as they did not satisfy the assumed value. Essentially, the study concluded by recommending that regular monitoring, inspections and non-destructive testing of concrete elements should be conducted on existing aged and defected buildings to detect the structural stability of the buildings;and it is imperative to evacuate occupants from heavy structurally deteriorated and defected buildings since most of them have lost their residual design life span and ability to sustain imposed loads.
文摘Riyadh city is the fastest growing city in Saudi Arabia. The rapid urban growth that happened recently in Riyadh was not based on the traditional urban planning principles, which have been established and applied for the city development process. The imported building regulations have created a new urban structures and street patterns. The contemporary urban form in Riyadh city is based mainly on traffic and economic consideration with the neglect of environmental dimensions. This research aims to examine the impacts of building regulations on the thermal performance of residential buildings in Riyadh city, with the ultimate goal of establishing planning guidelines that consider the environmental conditions of the city. The methodology adopted for achieving the aim of this study consists of two phases. First, the literature related to building regulations development in Riyadh, as of 2018, was reviewed. Second, buildings energy simulation was conducted to examine the thermal performance of the typical current status of residential building blocks in Riyadh city, and then several changes to building regulations were made to investigate their impacts on the thermal performance of buildings. The results showed that the impacts of Riyadh building regulations on the thermal performance of residential buildings differ across the evaluated cases. The ratio of building height to street width, urban block street orientation, and building orientation are the main factors affecting thermal performance of buildings within urban block. The study also concludes that adjusting the ratio of building height to the distance between buildings could have a significant impact in reducing cooling loads. This study will help policy makers, planners and designers to investigate the shortcoming in the current building regulations.
文摘The proliferation of multi-family residential building in Anambra State of Nigeria due to increasing demand without recourse to performance has broughtconcerns about the adequacy and sustainability of this housing type.This study therefore,assessed the adequacy and sustainability performance of multi-family residential buildings in urban areas of Anambra State.The study sampled the opinions of 384 households living in multi-family residential buildings through a questionnaire survey.We conducted data analysis based on 214 responses that were useful for analysis.The study found that internal and building component variables and supporting neigh-borhood variables were adequate,but the surrounding environment variables were inadequate based on Mean Score Index.However,based on Sustainability Performance Index,the occupant sperceived social sustainability performance of the buildings as satisfactory,while environmental and economic sustainability performance were perceived as fairly satisfactory.The Pearson correlation coefficient result further established that adequacy of internal and building component variables was significantly and positively related to the residents'perceived social sustainability performance.Adequacy of the surrounding environmental variables was also found to be positively and significantly related to the residents'perceived environmental sustainability performance,whereas adequacy of supporting neighborhood facilities was found to be negatively and significantly related to the residents’perceived economic sustainability performance.This sug-gested that investors and owners of multi-family residential buildings should direct more efforts towards improving the surrounding environment to supplements other facilities and increase the economic benefit of the renters or occupiers with increasing economic sustainability performance in terms of value for money.
文摘The winter in the severe cold area of China is long and cold. The mean outdoor temperature is about-10. 0 ℃ during the winter in Harbin,while the indoor air temperature is often above24 ℃. How does the indoor environment influence human thermal comfort and adaptation in such an overheated environment?A combined approach of spot-reading measurements and occupant interview s w as adopted in nine residential buildings of five communities during the heating period in 2013-2014. Tw enty residents w ere chosen as respondents. Totally 308 valid questionnaires w ere collected. The heating periods w ere separated into three phases based on the outdoor temperature.The results show that the mean indoor air temperatures in theearly-,mid-and late-heating periods w ere 23. 6 ℃,24. 3 ℃and 25. 0 ℃,respectively,w hich w ere larger than or close to the upper limit recommended by thermal comfort standards, and slightly higher than the related thermal neutral temperatures. With the heating process,the mean clothing insulation of residents decreased. Opening w indow s and reducing clothing w ere mainly taken by the residents to adapt to the overheated environment.The thermal neutral temperature has an upw ard tendency w ith the increasing indoor air temperature. On the other hand,overheating in residential buildings w ould make residents open w indow s,w hich may cause thermal discomfort and energy w aste. Therefore,the low er limit of the comfort indoor air temperature range should be suggested as the heating temperature,w hich could fully arouse residents' adaptation and achieve sustainable building designs.
基金Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414024)Student s Platform for Innovation and Entrepreneurship Training Program at State Level,the Ministry of Education of China(201910414012).
文摘In the context of the new period,the living standards and comfort demands of rural residents are increasing,which promotes the continuous growth of the total energy consumption of rural residential buildings.In this study,it estimated the total energy consumption of rural residential buildings in 30 provinces(or cities)in China from 2004 to 2016.Through the division of climate regions of the residential buildings,this paper analyzed the characteristics of changes in the energy structure of residential buildings and the trend of energy consumption from the perspective of the province.Then based on the people s livelihood and from the perspective of development,it came up with some pertinent strategies and recommendations for energy saving and emission reduction in rural residential buildings.