Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector...Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.展开更多
Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear...Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.展开更多
The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4...The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion.展开更多
In order to obtain a high-performance surface on P110 steel that can meet the requirements in oil/gas field environment, the chromium coatings were fabricated by pack cementation. The chromium coatings differed in wit...In order to obtain a high-performance surface on P110 steel that can meet the requirements in oil/gas field environment, the chromium coatings were fabricated by pack cementation. The chromium coatings differed in with/without the addition of La2O3. Scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD) and microhardness tester were employed to investigate the surface morphologies, surface element distributions, microstructures, phase constitutions and microhardness of the coatings. Friction-wear tests of the P110 steel substrate and the coatings were conducted in air at ambient temperature and humidity. The results show that 'uniform and continuous coatings are formed on P110 steel regardless of adding La2O3 or not. The chromium coatings consist of Cr23C6, Cr7C3, and (Cr, Fe)7C3. The La2O3-added chromium coating is more beneficial in terms of surface morphology, microstructure, thickness and microharduess as compared with the coating without adding La2O3. Chromizing treatment significantly improves the surface hardness and wear resistance of the P110 steel. The wear resistance of the tested samples can be sorted in the following sequence: La2O3-coating 〉 no RE-coating 〉bare P110 steel.展开更多
The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM)and X-ray diffraction were used to analyze the micro...The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM)and X-ray diffraction were used to analyze the microstructure.The worn surfaces were observed via laser scanning confocal microscopy and SEM.Results indicated that,under low austempering temperatures,the mechanical properties differed,and the wear resistance remained basically unchanged.The tensile strength of the samples was above 1800 MPa,but only one sample austempered at 230°C had an elongation of more than 10%.The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads.The samples showed little difference in wear resistance at different isothermal temperatures,whereas the thickness of their deformed layers varied greatly.The results are related to the initial hardness of the sample and the stability of the retained austenite.Meanwhile,the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.展开更多
The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and networ...The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and network ferrite are eliminated, the dislocation density and the quantity of dislocated martensite are increased remarkably, and the shape and distribution of inclusions are improved by the addition of RE. Therefore, the mechanical properties of the modified steel can be greatly increased, especially the toughness (αK) by 44%, yield strength (σs) by 10%, and elongation (δ5) by 42%.展开更多
A hot-working AISI H13 tool steel was subjected to a combined process consisting of surface nanocrystallization(SNC)and chromizing treatment successively.The composition,microstructure,hardness and wear resistance of ...A hot-working AISI H13 tool steel was subjected to a combined process consisting of surface nanocrystallization(SNC)and chromizing treatment successively.The composition,microstructure,hardness and wear resistance of the chromized layer were characterized by using the scanning and transmission electron microscopy,a nano-indenter and a tribo-meter.It was shown that a continuous chromized layer of approximately 30 μm in thickness was formed on the SNC specimen after a dual chromizing treatment at both 600℃ and 1050℃ consecutively,as thick as about 3 times of that on the coarse-grained specimen after the same chromizing treatment.In addition,the wear resistance of the SNC-chromized specimen was enhanced significantly,due to a smaller grain size and a higher hardness,as well as smoother gradient variations of the microstructure,composition and hardness across a greater depth in the formed chromized surface layer.展开更多
Quantum-chemical calculations of polyatomic clusters simulating a boundary between grains in a surface layer of steel were carried out. Along with iron atoms the clusters contain atoms of alloying and impurity element...Quantum-chemical calculations of polyatomic clusters simulating a boundary between grains in a surface layer of steel were carried out. Along with iron atoms the clusters contain atoms of alloying and impurity elements which appear on the boundary due to grain boundary segregation or intergrain diffusion. The influence of the chemical composition of a segregate on the strength of coupling between grains and, eventually, on steel wear resistance is analyzed. Results obtained show that the degree of the strength of binding of segregated atoms with atoms of iron in a metal surface layer is an essential factor influencing wear resistance. It is found that the dependence of energy of binding of atoms of different elements with grain surface on the atomic number complies with the periodic law. This fact can be considered as a theoretical base for the prognostication of strength properties of steel with different composition of alloying and impurity elements. Potential energy curves corresponding to the movement of atoms on iron surface are studied. They can be useful for design of the composition of multi-layer coats on steel.展开更多
By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to st...By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents(1.25 wt.%, 1.35 wt.%, and 1.45 wt.%) on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.展开更多
The structural and phase transformations occurring in the near-surface layers of pre-quenched W6Mo5Cr4V2 high-speed steel (HSS) subjected to intensity pulsed ion beam (IPIB) melting have been investigated. The effect ...The structural and phase transformations occurring in the near-surface layers of pre-quenched W6Mo5Cr4V2 high-speed steel (HSS) subjected to intensity pulsed ion beam (IPIB) melting have been investigated. The effect of IPIB irradiation on wear resistance of the HSS has also been studied. The IPIB consists mainly of Cn+(30%)^0 H+(70%), with a high beam current density of 80A/cm2, acceleration voltage of 250kV, pulse duration of 70 ns. Samples were bombarded with 1, 3, 5 pulses respectively. It has been revealed that after IPIB irradiation the initial martensite in the near-surface layer of HSS changed into austenite and produced residual stresses by using electron microscopy and X-ray diffraction. Redistribution and interlace of dislocations in the irradiated samples were generated under the impact of shock wave. With increasing pulse times gradual liquid-phase dissolution of M6C carbide particles occurs in the near-surface layer and produces nanocrystalline MC. This process results in the decrease of martensite crystal (a-phase) and increase of austenite (y-phase) content and the dispersed carbide. Wear resistance of the HSS is improved by a factor of 2, which is explained by the formation of metastable phases such nanocrystal and residual stresses and the redistribution and interlace of dislocations.展开更多
The abrasive wear behaviour of austenitic medium manganese steels was studied under weak corrosion-abrasive wear simulating the liner plate in wet metallic ore bail mill under non-severe impact-loading working conditi...The abrasive wear behaviour of austenitic medium manganese steels was studied under weak corrosion-abrasive wear simulating the liner plate in wet metallic ore bail mill under non-severe impact-loading working condition. Results show that the work-hardening mechanism and the wear resistance of high carbon austenitic medium manganese steels differ from those of medium carbon austenitic medium manganese steel. Under non-severe impact and weak corrosion-abrasive wear,the wear resistances of high carbon and medium carbon austenitic medium manganese steels are 50-90% and 20-40% higher than that of Hadfield steel respectively.展开更多
Ta and C ions extracted from a MEVVA ion source were implanted into Cr12 steel, with an implantation dose of (1-5)x1017cm-2, extraction acceleration 42kV, and average ion beam flux about 20-50μA·cm-2. Rutherfor...Ta and C ions extracted from a MEVVA ion source were implanted into Cr12 steel, with an implantation dose of (1-5)x1017cm-2, extraction acceleration 42kV, and average ion beam flux about 20-50μA·cm-2. Rutherford backscattering spectrum (RBS) was used to measure the surface composition after Ta and Ta+C implantation. Analysis of phase formed by Ta and C implantation was carried out by X-ray diffraction analysis (XRD). Experiment results showed that the wear rate of the implanted layer dropped 40% for Ta ion implantation and by a factor of 2.7 for Ta+C dual ion implantation. Ta+C dual ion implantation was found to reduce the friction coefficient of Cr12 steel. The wear mechanisms of the implanted layer were discussed.展开更多
The VC_p reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wea...The VC_p reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium, and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.展开更多
TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the ...TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.展开更多
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffracti...The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.展开更多
The SiCp(20 %)reinforced cobalt-based alloy composite coatings deposited by laser cladding on IF steel were introduced.The microstructure across the whole section of such coatings was examined using optical microscope...The SiCp(20 %)reinforced cobalt-based alloy composite coatings deposited by laser cladding on IF steel were introduced.The microstructure across the whole section of such coatings was examined using optical microscope,scanning electron microscope(SEM)and X-ray diffractometer(XRD),and the wear resistance of the coatings was measured by MM-200 type wear testing machine.The results show that the SiCpis completely dissolved during laser cladding and the primary phase in the coatings isγ-Co.The other phases,such as Si2 W,CoWSi,Cr3 Si and CoSi2,are formed by carbon,silicon reacting with other elements existing in the melting pool.There are various crystallization morphologies in different zones,such as planar crystallization at the interface,followed by cellular and dendrite crystallization from interface to the surface.The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad.The wear resistance of the clad is improved by adding SiCp.展开更多
Nickel-based alloy coatings were widely used for the remanufacturing of dies and moulds by laser cladding,but the crack sensitivity would be increase due to the higher strength and hardness,which reduced the wear resi...Nickel-based alloy coatings were widely used for the remanufacturing of dies and moulds by laser cladding,but the crack sensitivity would be increase due to the higher strength and hardness,which reduced the wear resistance of Ni-based alloys.In this paper,Ni-based coatings with the addition of a plastic phase(an austenitic stainless net)were prepared using laser cladding technology,and the CeO_(2)was added in cladding layers.The cracking mechanism,microhardness,microstructure,phase composition,and wear properties were investigated.The relationship between thermal stress and the elastic and plastic fracture had been developed from the standpoint of fracture mechan-ics and thermal elastic fracture mechanics.The fracture criterion of the nickel-based coating was obtained,and the study has shown that the crack sensitivity could be reduced by decreasing the thermal expansion coefficientΔα.Thus,a new method was proposed,which the stainless steel nets were prefabricated on the substrate.It was found that the number of cracks reduced significantly with the addition of stainless steel net.When the stainless steel net with 14 mesh was added in Ni-based coatings,the average microhardness of nickel composite coating was 565 HV_(0.2),which was 2.6 times higher than that of the 45 steel substrate.Although the rare earth oxide 4 wt.%CeO_(2)and stainless steel net were added in the Ni-based coating reducing the microhardness(the average microhardness is 425 HV_(0.2)),the wear resistance of it improved substantially.The wear volume of Ni-based composite coating was 0.56×10^(−5) mm^(3)·N^(−1)·m^(−1),which was 85.1%lower than that of 45 steel.The experiment results have shown that the Nickel-based composite coating is equipped with low crack sensitivity and high abrasive resistance with austenitic stainless net and the rare earth oxide 4 wt.%CeO2.This research offers an efficient solution to produce components with low crack susceptibility and high wear-resistance coatings fabricated by laser cladding.展开更多
A series of reciprocating wear tests were performed on the deep cryogenically treated and conventionally heat-treated samples of 100Cr6 bearing steel to study the wear resistance. The worn surfaces as well as the wear...A series of reciprocating wear tests were performed on the deep cryogenically treated and conventionally heat-treated samples of 100Cr6 bearing steel to study the wear resistance. The worn surfaces as well as the wear debris were analyzed by scanning electron microscopy. The improvement in wear resistance of the deep cryogenically treated samples ranges from 49% to 52%. This significant improvement in wear resistance can be attributed to finer carbide precipitation in the tempered martensitie matrix and the transformation of retained aus- tenite into martensite. X-ray diffraction analysis shows that the volume fraction of retained austenite in the conventionally heat-treated samples is 14% and that of the deep cryogenically treated samples is only 3%.展开更多
Iron-chromium cast alloys are basically abrasive wear resistant materials particularly employed in mining industry;these alloys are often utilized in the manufacture of milling balls. In particular, high Cr and high C...Iron-chromium cast alloys are basically abrasive wear resistant materials particularly employed in mining industry;these alloys are often utilized in the manufacture of milling balls. In particular, high Cr and high C cast alloys have been subjected of significant research;for instance, most reports have been addressed on analyzing the relation between microstructure and the abrasive wear behavior;however, there exist a reduced number of reports on relatively low Cr and low C cast alloys. In this research, five low Cr cast steels containing additions of V and Ti were melted in an open atmosphere induction furnace. Comparisons on the morphology, size, type and distribution of carbides were carried through optical microscopy, SEM and XRD. Hardness testing was employed at room temperature with the purpose of correlate to wear behavior. A laboratory pilotplant ball-mill set with a batch of ore was utilized in order to evaluate the abrasive wear resistance. According to microstructure observations, a martensitic primary matrix was revealed in all specimens. The fraction of M7C3 and M3C interdendritic eutectic carbides varied according to alloying level. Further results indicated that variations in the shape and size of M7C3 and M3C along with the presence of V and Ti carbides influenced on the abrasive wear behavior of low Cr cast steel mill balls.展开更多
To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear ...To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear properties were investigated.Moreover,the feasibility of replacing semi-steel with this new material in the V1 stand roll was studied herein.The results show that the graphitic steel matrix is strengthened by silicon and nickel elements.The presence of spherical graphite also provides self-lubrication and heat conduction and prevents the propagation of cracks.Carbides in the appropriate amount and size strengthen the matrix,reduce the cracking effect of the matrix,and are not easily broken,thereby reducing high-temperature abrasive wear.Under the same hightemperature friction and wear conditions,compared with semi-steel,the wear-scar surface of graphitic steel exhibits less wear-scar depth and wear volume,a smaller friction coefficient,reduced oxide layer thickness,and fewer instances of peeling and microcracks.Therefore,the newly designed graphitic steel has higher wear resistance and hot-crack resistance than semi-steel,which makes it feasible for use in replacing semi-steel as a new V1 frame roll material in the blooming mill.展开更多
文摘Effects of quenching temperature and cooling conditions(water cooling and 10%NaCl cooling)on microstructure and mechanical properties of a 0.2%Ti low alloy martensitic wear-resistant steel used for die casting ejector plate were investigated.The results show that lath martensite can be obtained after austenitizing in the range of 860-980℃and then water cooling.With an increase in austenitizing temperature,the precipitate content gradually decreases.The precipitates are mainly composed of TiC and Ti4C2S2,and their total content is between 1.15wt.%and 1.64wt.%.The precipitate phase concentration by water-cooling is higher than that by10%NaCl cooling due to the lower cooling rate of water cooling.As the austeniting temperature increases,the hardness and tensile strength of both water cooled and 10%NaCl cooled steels firstly increase and then decrease.The experimental steel exhibits the best comprehensive mechanical properties after being austenitized at 900℃,cooled by 10%NaCl,and then tempered at 200℃.Its hardness,ultimate tensile strength,and wear rate reach551.4 HBW,1,438.2 MPa,and 0.48×10^(-2)mg·m^(-1),respectively.
文摘Using ABAQUS software and cylindrical ellipsoid and body heat sources with a peak-heat-flux- attenuation function, a finite element model of the temperature field in the laser-arc hybrid welding of 4.5-mm BW300TP wear-resistant steel is proposed. The proposed model considers convection, radiation, molten pool flow, and heat conduction effect on temperature. A comparison of the simulation and actual welding test results confirms the reliability of the model. This welding heat-process model can provide the cooling rate at any position in the heat affected zone (HAZ) and can be used as a reference for the analysis of material properties and for process optimization.
基金financially supported by the Ocean Public Science and Technology Research Fund Projects of China (No. 201405013-3)the Science & Technology Program of Shanghai Maritime University (No. 20130448)+1 种基金the China Postdoctoral Science Foundation (No. 2017M620153)the National Natural Science Foundation of China (No. 51609133)
文摘The wear and corrosion resistance of Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) and Fe_(77.3)Cr_(15.8)Ni_(3.9)Mo_(1.1)Mn_(0.5)C_(0.2)Si_(1.2) coatings laser-cladded on AISI 4130 steel were studied.The coatings possess excellent wear and corrosion resistance despite the absence of expensive yttrium,tungsten,and cobalt and very little molybdenum.The microstructure mainly consists of dendrites and eutectic phases,such as duplex(γ+α)-Fe and the Fe–Cr(Ni)solid solution,confirmed via energy dispersive spectrometry and X-ray diffraction.The cladded Fe-based coatings have lower coefficients of friction,and narrower and shallower wear tracks than the substrate without the cladding,and the main wear mechanism is mild abrasive wear.Electrochemical test results suggest that the soft Fe_(72.2)Cr_(16.8)Ni_(7.3)Mo_(1.6)Mn_(0.7)C_(0.2)Si_(1.2) coating with high Cr and Ni concentrations has high passivation resistance,low corrosion current,and positive corrosion potential,providing a better protective barrier layer to the AISI 4130 steel against corrosion.
基金Project(2007CB607603) supported by the National Basic Research Program of China
文摘In order to obtain a high-performance surface on P110 steel that can meet the requirements in oil/gas field environment, the chromium coatings were fabricated by pack cementation. The chromium coatings differed in with/without the addition of La2O3. Scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), X-ray diffractometer (XRD) and microhardness tester were employed to investigate the surface morphologies, surface element distributions, microstructures, phase constitutions and microhardness of the coatings. Friction-wear tests of the P110 steel substrate and the coatings were conducted in air at ambient temperature and humidity. The results show that 'uniform and continuous coatings are formed on P110 steel regardless of adding La2O3 or not. The chromium coatings consist of Cr23C6, Cr7C3, and (Cr, Fe)7C3. The La2O3-added chromium coating is more beneficial in terms of surface morphology, microstructure, thickness and microharduess as compared with the coating without adding La2O3. Chromizing treatment significantly improves the surface hardness and wear resistance of the P110 steel. The wear resistance of the tested samples can be sorted in the following sequence: La2O3-coating 〉 no RE-coating 〉bare P110 steel.
基金the National Key Research and Development Plan of China(No.2016YFB0300205)the National Natural Science Foundation of China(Nos.U1810207 and 51601174).
文摘The mechanical properties and wear resistance of the ultrafine bainitic steel austempered at various temperatures were investigated.Scanning electron microscopy(SEM)and X-ray diffraction were used to analyze the microstructure.The worn surfaces were observed via laser scanning confocal microscopy and SEM.Results indicated that,under low austempering temperatures,the mechanical properties differed,and the wear resistance remained basically unchanged.The tensile strength of the samples was above 1800 MPa,but only one sample austempered at 230°C had an elongation of more than 10%.The weight loss of samples was approximately linear with the cycles of wear and nonlinear with the loads.The samples showed little difference in wear resistance at different isothermal temperatures,whereas the thickness of their deformed layers varied greatly.The results are related to the initial hardness of the sample and the stability of the retained austenite.Meanwhile,the experimental results showed that the effect of austempering temperature on the wear resistance of ultrafine bainitic steel can be neglected under low applied loads and low austempering temperature.
基金Project supported by the Innovation Fund for Outstanding Scholar of Henan Province (0621000600)
文摘The toughness of 31Mn2SiRE wear-resistance cast steel were increased by means of RE compound modification and high temperature austenitizing. The results show that the microstructures can be refined, needle and network ferrite are eliminated, the dislocation density and the quantity of dislocated martensite are increased remarkably, and the shape and distribution of inclusions are improved by the addition of RE. Therefore, the mechanical properties of the modified steel can be greatly increased, especially the toughness (αK) by 44%, yield strength (σs) by 10%, and elongation (δ5) by 42%.
基金supported by the National High-Tech.R&D Program(the National 863 plans projects,Grant No.2007AA03Z352)the National Science Foundation of China(Grant No.50701044 and 50890171)
文摘A hot-working AISI H13 tool steel was subjected to a combined process consisting of surface nanocrystallization(SNC)and chromizing treatment successively.The composition,microstructure,hardness and wear resistance of the chromized layer were characterized by using the scanning and transmission electron microscopy,a nano-indenter and a tribo-meter.It was shown that a continuous chromized layer of approximately 30 μm in thickness was formed on the SNC specimen after a dual chromizing treatment at both 600℃ and 1050℃ consecutively,as thick as about 3 times of that on the coarse-grained specimen after the same chromizing treatment.In addition,the wear resistance of the SNC-chromized specimen was enhanced significantly,due to a smaller grain size and a higher hardness,as well as smoother gradient variations of the microstructure,composition and hardness across a greater depth in the formed chromized surface layer.
文摘Quantum-chemical calculations of polyatomic clusters simulating a boundary between grains in a surface layer of steel were carried out. Along with iron atoms the clusters contain atoms of alloying and impurity elements which appear on the boundary due to grain boundary segregation or intergrain diffusion. The influence of the chemical composition of a segregate on the strength of coupling between grains and, eventually, on steel wear resistance is analyzed. Results obtained show that the degree of the strength of binding of segregated atoms with atoms of iron in a metal surface layer is an essential factor influencing wear resistance. It is found that the dependence of energy of binding of atoms of different elements with grain surface on the atomic number complies with the periodic law. This fact can be considered as a theoretical base for the prognostication of strength properties of steel with different composition of alloying and impurity elements. Potential energy curves corresponding to the movement of atoms on iron surface are studied. They can be useful for design of the composition of multi-layer coats on steel.
基金financially supported by the China Guangdong Province Science and Technology Plan Project(Nos.2010B0903000592011A080802003+1 种基金2011B090400519and 2012B090600030)
文摘By means of impact abrasion tests, micro-hardness tests, and worn surface morphology observation via SEM, a comparison research based upon different impact abrasive wear conditions was conducted in this research to study the influence of different carbon contents(1.25 wt.%, 1.35 wt.%, and 1.45 wt.%) on the wear resistance and wear mechanism of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The research results show that the wear resistance of the Mn18Cr2 cast steel is superior to that of the Mn13Cr2 cast steel under the condition of the same carbon content and different impact abrasive wear conditions because the Mn18Cr2 cast steel possesses higher worn work hardening capacity as well as a more desirable combination of high hardness and impact toughness than that of the Mn13Cr2 cast steel. When a 4.5 J impact abrasive load is applied, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the former dominates. When the carbon content is increased, the worn work hardening effect becomes increasingly dramatic, while the wear resistance of both steels decreases, which implies that an increase in impact toughness is beneficial to improving the wear resistance under severe impact abrasive wear conditions. Under the condition of a 1.0 J impact abrasive load, the wear mechanism of both steels is that plastic deformation fatigue spalling and micro-cutting coexist, and the latter plays a leading role. The worn work hardening effect and wear resistance intensify when the carbon content is increased, which implies that a higher hardness can be conducive to better wear resistance under low impact abrasive condition.
文摘The structural and phase transformations occurring in the near-surface layers of pre-quenched W6Mo5Cr4V2 high-speed steel (HSS) subjected to intensity pulsed ion beam (IPIB) melting have been investigated. The effect of IPIB irradiation on wear resistance of the HSS has also been studied. The IPIB consists mainly of Cn+(30%)^0 H+(70%), with a high beam current density of 80A/cm2, acceleration voltage of 250kV, pulse duration of 70 ns. Samples were bombarded with 1, 3, 5 pulses respectively. It has been revealed that after IPIB irradiation the initial martensite in the near-surface layer of HSS changed into austenite and produced residual stresses by using electron microscopy and X-ray diffraction. Redistribution and interlace of dislocations in the irradiated samples were generated under the impact of shock wave. With increasing pulse times gradual liquid-phase dissolution of M6C carbide particles occurs in the near-surface layer and produces nanocrystalline MC. This process results in the decrease of martensite crystal (a-phase) and increase of austenite (y-phase) content and the dispersed carbide. Wear resistance of the HSS is improved by a factor of 2, which is explained by the formation of metastable phases such nanocrystal and residual stresses and the redistribution and interlace of dislocations.
文摘The abrasive wear behaviour of austenitic medium manganese steels was studied under weak corrosion-abrasive wear simulating the liner plate in wet metallic ore bail mill under non-severe impact-loading working condition. Results show that the work-hardening mechanism and the wear resistance of high carbon austenitic medium manganese steels differ from those of medium carbon austenitic medium manganese steel. Under non-severe impact and weak corrosion-abrasive wear,the wear resistances of high carbon and medium carbon austenitic medium manganese steels are 50-90% and 20-40% higher than that of Hadfield steel respectively.
文摘Ta and C ions extracted from a MEVVA ion source were implanted into Cr12 steel, with an implantation dose of (1-5)x1017cm-2, extraction acceleration 42kV, and average ion beam flux about 20-50μA·cm-2. Rutherford backscattering spectrum (RBS) was used to measure the surface composition after Ta and Ta+C implantation. Analysis of phase formed by Ta and C implantation was carried out by X-ray diffraction analysis (XRD). Experiment results showed that the wear rate of the implanted layer dropped 40% for Ta ion implantation and by a factor of 2.7 for Ta+C dual ion implantation. Ta+C dual ion implantation was found to reduce the friction coefficient of Cr12 steel. The wear mechanisms of the implanted layer were discussed.
文摘The VC_p reinforced stainless steel composite was produced by in-situ reaction casting. The composite was tested for its wear resistance under the wet abrasive condition and corrosion resistance, compared with the wear-resistant white iron and stainless steel. The results show that the wear resistance of the composite is slightly inferior to that of the white iron, but much better than that of the stainless steel under the wet grinding abrasive condition. The corrosion resistance of the composite is much better than that of the white iron in the acid medium, and a little worse than that of the stainless steel. Thus the composite exhibits superior properties of wear resistance and corrosion resistance.
文摘TiC particle reinforced 420 stainless steel matrix composites were fabricated, and the microstructure, tensile properties and wear resistance of the composites were studied. The experimental results indicate that the distribution of TiC particles with size of 5 to 10 μm in diameter is uniform if the volume fraction of TiC is lower than 6%. However, slight agglomeration can be observed when the TiC content exceeds 6%. With the increase of TiC content the tensile and yield strength of the composites prepared increases and reaches the maximum when the volume fraction of TiC increases to 5%. Further increase of TiC content causes reductions of yield and tensile strength. The ductility of the composites shows a monotone decrease with the increase of TiC addition. The introduction of TiC into 420 stainless steel results in significant improvement on wear resistance, which reaches a steady level when the volume fraction of TiC increases to 11% and does not show obvious variation if the TiC content is further increased.
文摘The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.
基金Item Sponsored by International Government Cooperation Projects of Sino-Korea(2002009)and Sino-America(01088013)
文摘The SiCp(20 %)reinforced cobalt-based alloy composite coatings deposited by laser cladding on IF steel were introduced.The microstructure across the whole section of such coatings was examined using optical microscope,scanning electron microscope(SEM)and X-ray diffractometer(XRD),and the wear resistance of the coatings was measured by MM-200 type wear testing machine.The results show that the SiCpis completely dissolved during laser cladding and the primary phase in the coatings isγ-Co.The other phases,such as Si2 W,CoWSi,Cr3 Si and CoSi2,are formed by carbon,silicon reacting with other elements existing in the melting pool.There are various crystallization morphologies in different zones,such as planar crystallization at the interface,followed by cellular and dendrite crystallization from interface to the surface.The direction of solidification changes from one direction perpendicular to interface to multi-directions at the central and upper regions of the clad.The wear resistance of the clad is improved by adding SiCp.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1105100)National Natural Science Foundation of China(Grant No.51975246)+5 种基金Jilin Provincial Science and Technology Development Plan of China(Grant Nos.20190302123GX,YDZJ202101ZYTS134)the State Key Laboratory of Automotive Simulation and Control-ziyoutansuoxiangmu(202013)Interdisciplinary Research Funding Program for Doctoral Candidates of Jilin University(101832020DJX052)Science and Technology Project of Jilin Education Department(Grant No.JJKH20200958KJ)Program for JLU Science and Technology Innovative Research Team(Grant No.2019TD-34)the Advanced Manufacturing Project of Provincial School Construction of Jilin Province of China(Grant No.SXGJSF2017-2).
文摘Nickel-based alloy coatings were widely used for the remanufacturing of dies and moulds by laser cladding,but the crack sensitivity would be increase due to the higher strength and hardness,which reduced the wear resistance of Ni-based alloys.In this paper,Ni-based coatings with the addition of a plastic phase(an austenitic stainless net)were prepared using laser cladding technology,and the CeO_(2)was added in cladding layers.The cracking mechanism,microhardness,microstructure,phase composition,and wear properties were investigated.The relationship between thermal stress and the elastic and plastic fracture had been developed from the standpoint of fracture mechan-ics and thermal elastic fracture mechanics.The fracture criterion of the nickel-based coating was obtained,and the study has shown that the crack sensitivity could be reduced by decreasing the thermal expansion coefficientΔα.Thus,a new method was proposed,which the stainless steel nets were prefabricated on the substrate.It was found that the number of cracks reduced significantly with the addition of stainless steel net.When the stainless steel net with 14 mesh was added in Ni-based coatings,the average microhardness of nickel composite coating was 565 HV_(0.2),which was 2.6 times higher than that of the 45 steel substrate.Although the rare earth oxide 4 wt.%CeO_(2)and stainless steel net were added in the Ni-based coating reducing the microhardness(the average microhardness is 425 HV_(0.2)),the wear resistance of it improved substantially.The wear volume of Ni-based composite coating was 0.56×10^(−5) mm^(3)·N^(−1)·m^(−1),which was 85.1%lower than that of 45 steel.The experiment results have shown that the Nickel-based composite coating is equipped with low crack sensitivity and high abrasive resistance with austenitic stainless net and the rare earth oxide 4 wt.%CeO2.This research offers an efficient solution to produce components with low crack susceptibility and high wear-resistance coatings fabricated by laser cladding.
基金the financial support by the Department of Science and Technology Fund for the Science and Technology Infrastructure in Higher Educational Institutions(DST-FIST),Government of India,for the cryogenic treatment facility,and the Anna Centenary Research Fellowship Scheme from Anna University,Chennai,India
文摘A series of reciprocating wear tests were performed on the deep cryogenically treated and conventionally heat-treated samples of 100Cr6 bearing steel to study the wear resistance. The worn surfaces as well as the wear debris were analyzed by scanning electron microscopy. The improvement in wear resistance of the deep cryogenically treated samples ranges from 49% to 52%. This significant improvement in wear resistance can be attributed to finer carbide precipitation in the tempered martensitie matrix and the transformation of retained aus- tenite into martensite. X-ray diffraction analysis shows that the volume fraction of retained austenite in the conventionally heat-treated samples is 14% and that of the deep cryogenically treated samples is only 3%.
文摘Iron-chromium cast alloys are basically abrasive wear resistant materials particularly employed in mining industry;these alloys are often utilized in the manufacture of milling balls. In particular, high Cr and high C cast alloys have been subjected of significant research;for instance, most reports have been addressed on analyzing the relation between microstructure and the abrasive wear behavior;however, there exist a reduced number of reports on relatively low Cr and low C cast alloys. In this research, five low Cr cast steels containing additions of V and Ti were melted in an open atmosphere induction furnace. Comparisons on the morphology, size, type and distribution of carbides were carried through optical microscopy, SEM and XRD. Hardness testing was employed at room temperature with the purpose of correlate to wear behavior. A laboratory pilotplant ball-mill set with a batch of ore was utilized in order to evaluate the abrasive wear resistance. According to microstructure observations, a martensitic primary matrix was revealed in all specimens. The fraction of M7C3 and M3C interdendritic eutectic carbides varied according to alloying level. Further results indicated that variations in the shape and size of M7C3 and M3C along with the presence of V and Ti carbides influenced on the abrasive wear behavior of low Cr cast steel mill balls.
文摘To solve the problem of the severe mismatch between the product and roll materials in the preliminary rolling line,a new graphitic steel material was designed,its microstructure and high-temperature friction and wear properties were investigated.Moreover,the feasibility of replacing semi-steel with this new material in the V1 stand roll was studied herein.The results show that the graphitic steel matrix is strengthened by silicon and nickel elements.The presence of spherical graphite also provides self-lubrication and heat conduction and prevents the propagation of cracks.Carbides in the appropriate amount and size strengthen the matrix,reduce the cracking effect of the matrix,and are not easily broken,thereby reducing high-temperature abrasive wear.Under the same hightemperature friction and wear conditions,compared with semi-steel,the wear-scar surface of graphitic steel exhibits less wear-scar depth and wear volume,a smaller friction coefficient,reduced oxide layer thickness,and fewer instances of peeling and microcracks.Therefore,the newly designed graphitic steel has higher wear resistance and hot-crack resistance than semi-steel,which makes it feasible for use in replacing semi-steel as a new V1 frame roll material in the blooming mill.