In order to obtain reasonable schemes of arrester in converter stations, the arrester scheme of "Xiluodu-Guangdong HVDC ± 500 kV double circuit transmission" project against lighting induced overvoltage...In order to obtain reasonable schemes of arrester in converter stations, the arrester scheme of "Xiluodu-Guangdong HVDC ± 500 kV double circuit transmission" project against lighting induced overvoltage, which was designed according to the main principle of lightning protection in converter station, is discussed. A calculation of the lighting induced overvoltage in Zhaotong converter station un- der various operation modes is performed with ATP-EMTP software, then the surge arrester configuration of the converter station is decided, and the arrester protection schemes of smoothing reactor and neutral line are studied. It is concluded that additional protection is necessary because of the relatively large gap between protected disconnecting switch and arrester of metallic return transfer bus. Plus, the smoothing reactor (SR) arrester near the valve hall could be removed to improve the scheme’s economic performance.展开更多
Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightni...Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightning electromagnetic pulses.In this study,using capacitive and resistive dividers,current probes and optical fiber transmission devices,we measured and analyzed the induced overvoltage on the overhead transmission line and the overcurrent through Surge Protective Devices(SPD) when a lightning discharge was artificially triggered nearby on August 12,2008 at Conghua Field Lightning Experiment Site.The triggered lightning discharge contained an initial current stage and eight return strokes whose peak currents ranged from 6.6kA to 26.4kA.We found that overcurrents through SPD were induced on the power line both during the initial continuous current stage and the return stroke processes.During the return strokes,the residual voltage and the current through the SPD lasted up to the ms(millisecond) range,and the overcurrents exhibited a mean waveform up to 22/69μs with a peak value of less than 2kA.Based on the observed data,simple calculations show that the corresponding single discharge energy was much greater than the values of the high voltage pulse generators commonly used in the experiments regulated for SPD.The SPD discharge current peak was not synchronous to that of the residual voltage with the former obviously lagging behind the latter.The SPD discharge current peak was well correlated with the triggered lightning current peak and the wave-front current gradient.The long duration of the SPD current is one of the major reasons why the SPD was damaged even with a big nominal discharge current.展开更多
Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This...Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This paper describes the discharge characteristics of different types of air terminals,two of which are quite similar to the ESE-type dynasphere,and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.展开更多
The structural damage to vascular endothelial cell In a recent article in the journal Brain Injury, four potential hypotheses for delayed neurological disorders following lightning and electrical injury were suggested...The structural damage to vascular endothelial cell In a recent article in the journal Brain Injury, four potential hypotheses for delayed neurological disorders following lightning and electrical injury were suggested (Reisner, 2013). The phenomenon of delayed neurodegenerative syndromes following lighting and electrical injury has been known since the early 1930s (Critchley, 1934), but to the present day, the mechanisms involved have been poorly un- derstood. An initial and still plausible theory is that the electrical insult causes damage to the vascular structures feeding the spinal cord via damage to vascular endothelial cells (Farrell and Starr, 1968).展开更多
Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of the...Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of them are based on safety guidelines published by international expert groups. In this paper, electric and magnetic fields are calculated in the vicinity of 25 kV traction line supplying railway traction systems. Calculation results are compared to exposure limits specified by safety guidelines and regulations. Possible countermeasures for reduction of electromagnetic fields are proposed. Also, this paper presents a method for calculation of the induced voltages to an underground gas pipeline from a neighbouring 25 kV electric traction overhead line in case of short circuit. Calculations are performed with EMTP-ATP software. Possible countermeasures for reduction of induced voltages are proposed.展开更多
Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circu...Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circuit voltage with a rise time of about 10 ns and full width at half maximum of about 28 ns is detected when the film surface is irradiated by a 308-nm laser pulse with a duration of 25 ns. Besides, opemcircuit voltage signals are also observed when the film surface is irradiated separately by the laser pulses of 532 nm and 1064 nm. The results indicate that Ca3Co4O9 thin films have a great potential application in the wide range photodetctor from the ultraviolet to near infrared regions.展开更多
This paper has researched the insulation characteristics of 10% c-C4F8/N2/CO2 mixtures under lightning impulse voltage by experiment. It is shown that the positive and negative lightning impulse breakdown voltages of ...This paper has researched the insulation characteristics of 10% c-C4F8/N2/CO2 mixtures under lightning impulse voltage by experiment. It is shown that the positive and negative lightning impulse breakdown voltages of 10%c-C4F8/N2/CO2 gas mixtures rise linearly as the electrode gap distance and gas pressure increase and under the same conditions, the positive lightning impulse breakdown voltage of the gas mixtures is always higher than the negative lightning impulse breakdown voltage. As the gas mixtures have a little higher liquefied temperature than SF6 and the comprehensive GWP is about 5% of SF6, and the positive and negative lightning impulse breakdown voltages can both reach 60% of SF6, 10%c-C4F8/N2/CO2 gas mixtures can be applied as insulation gas in electrical equipment such as C-GIS, GIT, GIL and so on.展开更多
The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced...The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced current on a 110 kV crossing line inside Jinhua in Zhejiang province is performed. The electrostatic induced voltage on the measured line is 12.24 kV. The power frequency electromagnetic field simulation model is established, and the calculation results are consistent with the measured. Influence factors analysis shows that the electrostatic induced voltage on the 110 kV line is 12.78 kV, the electromagnetic induced voltage is 12.3 V, the induced current through ground wire is less than 1A when the UHV lines operate at full load. The induced voltage and current decrease while the crossing distance increases. Parallel lines induction is much higher than crossing lines. The electromagnetic induced voltage after ground knife-switch shut down would exceed the human safety voltage 36 V while the crossing angle is less than 30?, so the temporary ground wire must be hanged to ensure safety of the maintenance staff.展开更多
This article focuses on the aggression of lightning overload on the equipment of the electrical network of sites where storm activity is very dense;and the electrocution of people located in the direct environment of ...This article focuses on the aggression of lightning overload on the equipment of the electrical network of sites where storm activity is very dense;and the electrocution of people located in the direct environment of the high-voltage substation during the flow of lightning current to the ground through the ground socket. The modeling of the flow circuit of the shock wave consisting of guard wire, lightning arrester and ground socket couple to the transformer of the high voltage substations, thanks to the approach of a servo block, led to the synthesis of a PID regulator (corrector) whose action is to reject the effects of the overvoltage on the network equipment and to significantly reduce or even cancel the effects of the step or touch voltage due to the distribution of the potential around the ground socket;and thus improve the quality of service of the high-voltage transmission and distribution electricity network, especially in stormy times.展开更多
This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin fi...This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength, the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3-0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.展开更多
Recently, a lightning surge is recognized as one of the biggest risks to the society. If the surges induced by lightning invade into low voltage distribution lines, there might be a possibility of giving some severe d...Recently, a lightning surge is recognized as one of the biggest risks to the society. If the surges induced by lightning invade into low voltage distribution lines, there might be a possibility of giving some severe damages to the systems. Therefore, it is necessary to examine these induced phenomena. FDTD (finite difference time domain) method which treats objects as three-dimensional solid circuits is applied to analyze these induced phenomena. VSTL (Virtual Surge Test Lab.) is the surge analysis simulation program using FDTD method. In this paper, the lightning induced phenomena on the low voltage distribution line in the house are analyzed by using VSTL. In this paper, investigation results about induced surge when a lightning struck the point nearby the house, and about a suppressing effect of surges by comparing the results of analysis with and without SPD (surge protective device) are shown. As a result, it is confirmed that SPD is effective for suppressing lightning surge.展开更多
Lightning-generated nitrogen oxides(LNO_(x))have a major influence on the atmosphere and global climate change.Therefore,it is of great importance to obtain a more accurate estimation of LNO_(x).The aim of this study ...Lightning-generated nitrogen oxides(LNO_(x))have a major influence on the atmosphere and global climate change.Therefore,it is of great importance to obtain a more accurate estimation of LNO_(x).The aim of this study is to provide a reference for the accurate estimation of the total LNO_(x) in the mainland of China based on cloud-to-ground lightning(CG)location data from 2014 to 2018.The energy of each CG flash was based on the number of return strokes per CG flash,the peak current of each return stroke,and the assumed CG breakdown voltage.The energy of intracloud lightning(IC)was based on the estimated frequencies of IC and the assumed energy of each IC flash.Combining the energy of lightning and the number of nitric oxide(NO)molecules produced by unit energy(ρno),the total LNO_(x) production in the mainland of China was determined.The LNO_(x) in the mainland of China estimated in this study is in the range(0.157-0.321)×10^(9) kg per year[Tg(N)yr-1],which is on the high end of other scholars’works.Negative cloud-to-ground lightning(NCG)flashes produce the most moles of NO_(x),while positive cloud-to-ground lightning(PCG)flashes produce the least total moles of NO_(x).The breakdown voltage of PCG is greater than that of IC or NCG,while the latter has a greater output of LNO_(x).展开更多
A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced ch...A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process.展开更多
The effects of the high voltage stress and other environmental conditions on crystalline silicon photovoltaic module performance have not been included in the IEC 61215 or other qualification standards. In this work, ...The effects of the high voltage stress and other environmental conditions on crystalline silicon photovoltaic module performance have not been included in the IEC 61215 or other qualification standards. In this work, we are to evaluate the potential induced degradation on p type crystalline silicon PV modules by three cases, one case is in room temperature, 100% relative humidity water bath, another is in room temperature, the front sheet coverage with aluminum foil and the other is in the 85°C, 85% relative humidity climate chamber. All the samples are applied with the -1000 V bias to active layers, respectively. Our current-voltage measurements and electroluminescence results showed in these modules power loss of 37.74%, 11.29% and 49.62%, respectively. These test results have shown that among high voltage effects the climate chamber is the harshest and fastest test. In this article we also showed that the ethylene vinyl acetate volume resistivity and soda-lime glass ingredients are important factors to PID failure. The high volume resistivity which is more than 1014 Ω·cm and Na less contents glass will mitigate the PID effect to ensure PID free.展开更多
At present,the Lu an Radio and Television Tower is the tallest building in Anhui Province,and it is easily struck by lightning during the thunderstorm season.In order to clearly understand the lightning environment ar...At present,the Lu an Radio and Television Tower is the tallest building in Anhui Province,and it is easily struck by lightning during the thunderstorm season.In order to clearly understand the lightning environment around the TV tower,based on the lightning positioning monitoring data provided by the Anhui Meteorological Bureau,the distribution characteristics of six lightning parameters within 5 km of the TV tower were studied firstly.Secondly,combined with the field survey data,a soil model was established,and the distribution of ground potential and other related parameters were simulated using CDEGS software,which can provide certain reference for the subsequent lightning protection design and construction.展开更多
Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and s...Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and so there is more probability of lightning strike.Blades are the most probable components to be struck by lightning.The most common lightning protection system for the blades consists of several metallic receptors on the blade surface.Those are connected to the ground by metallic down-conductors placed inside the blade shell.This paper studies effects of the receptor configurations on protecting the blade against lightning strike.For this purpose,an analysis procedure based on finite element method(FEM)in COMSOL Multiphysics software environment is used.The voltage distribution around the blade is simulated for various configurations of receptors.The best configuration is presented.Simulations are performed on the blade model of a special wind turbine,which isVESTAS V47".展开更多
There are two major protective methods against lightning outages on overhead distribution lines.One is a surge arrester,and the other is an overhead ground wire.The surge arresters have rather constant effect regardle...There are two major protective methods against lightning outages on overhead distribution lines.One is a surge arrester,and the other is an overhead ground wire.The surge arresters have rather constant effect regardless of the cause of the lightning outage.On the other hand,the effect of an overhead ground wire is quite different in two major causes,the direct lightning hit and the induced overvoltage.It is sufficient to provide surge arresters with an interval of 300 m for protection against the induced overvoltage caused by the nearby lightning stroke.Use of an overhead ground wire together with surge arresters is effective for lightning protection against the direct lightning hit to a distribution line.Puncture of surge arresters is the popular outage when the outage caused by the insulation break decreases sufficiently.Also,the existence of nearby trees leads to the line break due to the side flash from a tree.Advanced lightning protection equipment with ZnO arrester components is popular in Japan.Modeling of a pole transformer and application of an electromagnetic analysis method,such as FDTD method,to surge phenomena is considerably advanced.展开更多
In addition to the conventional Franklin Rod,many non-conventional air terminals are being used as lightning protection devices.As cited in previous works,these non-conventional devices emit space charge in the vicini...In addition to the conventional Franklin Rod,many non-conventional air terminals are being used as lightning protection devices.As cited in previous works,these non-conventional devices emit space charge in the vicinity of the terminals during the process of lightning stroke.A number of factors affect the performance of these lightning protection devices,among them are geometry and dimension of the devices,location of the device above the ground,height of the cloud above the ground,and polarity of the lightning stroke.The performance of these lightning protection devices has been a topic of discussion by researchers for many years.Some studies focused on the magnitude of emission current from these devices as a criterion to evaluate their performances.The critical flashover voltage(CFO)between the devices and a metal screen simulating cloud can also be used as another criterion to evaluate the performance of the devices.Laboratory measurements were conducted in controlled conditions on different types of lightning protection devices to compare their performance.Four different types of devices were used in the present study:Franklin Rod,TerraStat models TS 100,TS 400,and Spline Ball Ionizer.The study focused on the CFO voltage of the air gap between devices and the metal screen.The CFO voltage was evaluated using standard switching and lightning impulses.The measurements were recorded for positive as well as negative polarity.The air gap between the devices and metal screen was selected at 2 m and 3 m.The results obtained provide a better understanding of the electrical performance of lightning protection devices.展开更多
In order to research segmented diverters for aircraft lightning protection, a transient 2 D multiphysics model based on magnetohydrodynamics theory is proposed to predict the location of the arc plasma discharge and l...In order to research segmented diverters for aircraft lightning protection, a transient 2 D multiphysics model based on magnetohydrodynamics theory is proposed to predict the location of the arc plasma discharge and lightning channel, and to simulate the electrothermal behavior.Based on numerical calculation and preliminary analysis, factors that affect the breakdown voltage of the segmented diverter are discussed. The results show that the voltage increase rate of the voltage source, the width of the air gap between metal segments and the geometry of these segments influence the breakdown voltage of the strip. High-voltage tests of the segmented diverter are performed to reveal air breakdown of the strip and redirect the lightning current.Experimental and numerical results are compared to verify the correctness of the numerical model. The ionization of the air gap between metal segments and the breakdown voltage of the strip calculated by the model are qualitatively consistent with experimental results. The breakdown voltage of the segmented diverter is far lower than the lightning voltage. When a lightning strike occurs, the segmented diverter can be quickly ionized to form a plasma channel which can guide the lightning current well.展开更多
The voltage uprating of existing overhead lines is an interesting solution for increasing the transmission of electricity, especially in areas where it is difficult to build new lines. If a line is uprated with minor ...The voltage uprating of existing overhead lines is an interesting solution for increasing the transmission of electricity, especially in areas where it is difficult to build new lines. If a line is uprated with minor changes of its design and without improvement of the grounding electrodes of towers, its lightning performance remains unchanged. The consequence is that the uprated line will have a lightning flashover rate very high compared to an overhead line of same nominal voltage but of standard design. One attractive solution to solve this problem is to use line arresters. The goal of this paper is to study the use of line arresters to achieve a satisfactory lightning performance of an overhead line uprated from 225 kV to 400 kV without major design modifications. In order to compare different strategies of line arrester installation the flashover rate is calculated based on a software able to launch automatically EMTP-RV. The software named LIPS has been developed under the cover of a partnership between Hydro-Quebec, RTE and EDF.展开更多
基金Project supported by Key Project of National Natural Science Foundation of China (50737003).
文摘In order to obtain reasonable schemes of arrester in converter stations, the arrester scheme of "Xiluodu-Guangdong HVDC ± 500 kV double circuit transmission" project against lighting induced overvoltage, which was designed according to the main principle of lightning protection in converter station, is discussed. A calculation of the lighting induced overvoltage in Zhaotong converter station un- der various operation modes is performed with ATP-EMTP software, then the surge arrester configuration of the converter station is decided, and the arrester protection schemes of smoothing reactor and neutral line are studied. It is concluded that additional protection is necessary because of the relatively large gap between protected disconnecting switch and arrester of metallic return transfer bus. Plus, the smoothing reactor (SR) arrester near the valve hall could be removed to improve the scheme’s economic performance.
基金A key project of China Meteorological Administration (CMATG2008Z07)Specialized Science Project for Public Welfare Industries (GYHY2007622)Key Science Project of the Guangzhou Regional Meteorological Center (GRMC2007B03)
文摘Techniques of artificially-triggered lightning have provided a significantly useful means to directly measure various physical parameters of lightning discharge and to conduct research on protection methods of lightning electromagnetic pulses.In this study,using capacitive and resistive dividers,current probes and optical fiber transmission devices,we measured and analyzed the induced overvoltage on the overhead transmission line and the overcurrent through Surge Protective Devices(SPD) when a lightning discharge was artificially triggered nearby on August 12,2008 at Conghua Field Lightning Experiment Site.The triggered lightning discharge contained an initial current stage and eight return strokes whose peak currents ranged from 6.6kA to 26.4kA.We found that overcurrents through SPD were induced on the power line both during the initial continuous current stage and the return stroke processes.During the return strokes,the residual voltage and the current through the SPD lasted up to the ms(millisecond) range,and the overcurrents exhibited a mean waveform up to 22/69μs with a peak value of less than 2kA.Based on the observed data,simple calculations show that the corresponding single discharge energy was much greater than the values of the high voltage pulse generators commonly used in the experiments regulated for SPD.The SPD discharge current peak was not synchronous to that of the residual voltage with the former obviously lagging behind the latter.The SPD discharge current peak was well correlated with the triggered lightning current peak and the wave-front current gradient.The long duration of the SPD current is one of the major reasons why the SPD was damaged even with a big nominal discharge current.
基金partly supported by National Natural Science Foundation of China(No.51577098)the State Grid Corporation of China,and China Southern Power Grid
文摘Different types of lightning air terminals have been designed over the years.Concern regarding the effect of different types of air terminals,especially the early streamer emission(ESE)-type,remains controversial.This paper describes the discharge characteristics of different types of air terminals,two of which are quite similar to the ESE-type dynasphere,and concludes that the tested non-standard air terminals have discharge characteristics similar to those of Franklin rods and that their lightning protection performance should be similar.
文摘The structural damage to vascular endothelial cell In a recent article in the journal Brain Injury, four potential hypotheses for delayed neurological disorders following lightning and electrical injury were suggested (Reisner, 2013). The phenomenon of delayed neurodegenerative syndromes following lighting and electrical injury has been known since the early 1930s (Critchley, 1934), but to the present day, the mechanisms involved have been poorly un- derstood. An initial and still plausible theory is that the electrical insult causes damage to the vascular structures feeding the spinal cord via damage to vascular endothelial cells (Farrell and Starr, 1968).
文摘Various regulations, aimed at the protection of human beings and electrical equipment against possible adverse effects resulting from exposure to electromagnetic fields, have been issued in many countries. Most of them are based on safety guidelines published by international expert groups. In this paper, electric and magnetic fields are calculated in the vicinity of 25 kV traction line supplying railway traction systems. Calculation results are compared to exposure limits specified by safety guidelines and regulations. Possible countermeasures for reduction of electromagnetic fields are proposed. Also, this paper presents a method for calculation of the induced voltages to an underground gas pipeline from a neighbouring 25 kV electric traction overhead line in case of short circuit. Calculations are performed with EMTP-ATP software. Possible countermeasures for reduction of induced voltages are proposed.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 10904030)the Natural Science Foundation of Hebei Province, China (Grant No. A2009000144)
文摘Laser-induced voltage effects in c-axis oriented Ca3Co4O9 thin films have been studied with samples fabricated on 10°tilted LaAIO3 (001) substrates by a simple chemical solution deposition method. An open-circuit voltage with a rise time of about 10 ns and full width at half maximum of about 28 ns is detected when the film surface is irradiated by a 308-nm laser pulse with a duration of 25 ns. Besides, opemcircuit voltage signals are also observed when the film surface is irradiated separately by the laser pulses of 532 nm and 1064 nm. The results indicate that Ca3Co4O9 thin films have a great potential application in the wide range photodetctor from the ultraviolet to near infrared regions.
基金supported by National Natural Science Foundation of China (No. 51337006)
文摘This paper has researched the insulation characteristics of 10% c-C4F8/N2/CO2 mixtures under lightning impulse voltage by experiment. It is shown that the positive and negative lightning impulse breakdown voltages of 10%c-C4F8/N2/CO2 gas mixtures rise linearly as the electrode gap distance and gas pressure increase and under the same conditions, the positive lightning impulse breakdown voltage of the gas mixtures is always higher than the negative lightning impulse breakdown voltage. As the gas mixtures have a little higher liquefied temperature than SF6 and the comprehensive GWP is about 5% of SF6, and the positive and negative lightning impulse breakdown voltages can both reach 60% of SF6, 10%c-C4F8/N2/CO2 gas mixtures can be applied as insulation gas in electrical equipment such as C-GIS, GIT, GIL and so on.
文摘The induced electricity of 110 kV transmission lines which cross the UHV AC transmission lines may threaten personal safety of the maintenance staff. In this paper, field measurement of the induced voltage and induced current on a 110 kV crossing line inside Jinhua in Zhejiang province is performed. The electrostatic induced voltage on the measured line is 12.24 kV. The power frequency electromagnetic field simulation model is established, and the calculation results are consistent with the measured. Influence factors analysis shows that the electrostatic induced voltage on the 110 kV line is 12.78 kV, the electromagnetic induced voltage is 12.3 V, the induced current through ground wire is less than 1A when the UHV lines operate at full load. The induced voltage and current decrease while the crossing distance increases. Parallel lines induction is much higher than crossing lines. The electromagnetic induced voltage after ground knife-switch shut down would exceed the human safety voltage 36 V while the crossing angle is less than 30?, so the temporary ground wire must be hanged to ensure safety of the maintenance staff.
文摘This article focuses on the aggression of lightning overload on the equipment of the electrical network of sites where storm activity is very dense;and the electrocution of people located in the direct environment of the high-voltage substation during the flow of lightning current to the ground through the ground socket. The modeling of the flow circuit of the shock wave consisting of guard wire, lightning arrester and ground socket couple to the transformer of the high voltage substations, thanks to the approach of a servo block, led to the synthesis of a PID regulator (corrector) whose action is to reject the effects of the overvoltage on the network equipment and to significantly reduce or even cancel the effects of the step or touch voltage due to the distribution of the potential around the ground socket;and thus improve the quality of service of the high-voltage transmission and distribution electricity network, especially in stormy times.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10274026)
文摘This paper reports that the transverse laser induced thermoelectric voltages (LITV) axe observed for the first time in the step flow growth (1- x)PD(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT, x = 0.20, 0.33, 0.50) thin films deposited on vicinal-cut strontium titanate single crystal substrates. Because lead magnesium niobate-lead titanate is a solid solution of lead magnesium niobate (PMN) and lead titanate (PT), there are two types of signals. One is wide with a time response of a microsecond, and the other superimposed with the wide signal is narrow with a time response of a nanosecond. The transverse LITV signals depend on the ratio of PMN to PT drastically. Under the irradiation of 28-ns pulsed KrF excimer laser with the 248-nm wavelength, the largest induced voltage is observed in the 0.50Pb(Mg1/3Nb2/3)O3-0.50 PbTiO3 films. Moreover, the effects of film thickness, substrates, and tilt angles of substrates are also investigated.
文摘Recently, a lightning surge is recognized as one of the biggest risks to the society. If the surges induced by lightning invade into low voltage distribution lines, there might be a possibility of giving some severe damages to the systems. Therefore, it is necessary to examine these induced phenomena. FDTD (finite difference time domain) method which treats objects as three-dimensional solid circuits is applied to analyze these induced phenomena. VSTL (Virtual Surge Test Lab.) is the surge analysis simulation program using FDTD method. In this paper, the lightning induced phenomena on the low voltage distribution line in the house are analyzed by using VSTL. In this paper, investigation results about induced surge when a lightning struck the point nearby the house, and about a suppressing effect of surges by comparing the results of analysis with and without SPD (surge protective device) are shown. As a result, it is confirmed that SPD is effective for suppressing lightning surge.
基金supported by the National Natural Science Foundation of China (Grant Nos. 91537209 and 91644224)
文摘Lightning-generated nitrogen oxides(LNO_(x))have a major influence on the atmosphere and global climate change.Therefore,it is of great importance to obtain a more accurate estimation of LNO_(x).The aim of this study is to provide a reference for the accurate estimation of the total LNO_(x) in the mainland of China based on cloud-to-ground lightning(CG)location data from 2014 to 2018.The energy of each CG flash was based on the number of return strokes per CG flash,the peak current of each return stroke,and the assumed CG breakdown voltage.The energy of intracloud lightning(IC)was based on the estimated frequencies of IC and the assumed energy of each IC flash.Combining the energy of lightning and the number of nitric oxide(NO)molecules produced by unit energy(ρno),the total LNO_(x) production in the mainland of China was determined.The LNO_(x) in the mainland of China estimated in this study is in the range(0.157-0.321)×10^(9) kg per year[Tg(N)yr-1],which is on the high end of other scholars’works.Negative cloud-to-ground lightning(NCG)flashes produce the most moles of NO_(x),while positive cloud-to-ground lightning(PCG)flashes produce the least total moles of NO_(x).The breakdown voltage of PCG is greater than that of IC or NCG,while the latter has a greater output of LNO_(x).
基金This research was supported by the National Key Research and Development Program of China(Grant No.2017YFC1501504)the National Natural Science Foundation of China(Grant Nos.41875003,41805002)the Open Research Program of the State Key Laboratory of Severe Weather(Grant No.2019LASW-A03).
文摘A theoretical discussion of the discharge effects of upward lightning simulated with a fine-resolution 2D thunderstorm model is performed in this paper,and the results reveal that the estimates of the total induced charge on the upward lightning discharge channels range from 0.67 to 118.8 C,and the average value is 19.0 C,while the ratio of the induced charge on the leader channels to the total opposite-polarity charge in the discharge region ranges from 5.9%to 47.3%,with an average value of 14.7%.Moreover,the average value of the space electrostatic energy consumed by upward lightning is 1.06×10^9 J.The above values are lower than those related to intracloud lightning discharges.The density of the deposited opposite-polarity charge is comparable in magnitude to that of the preexisting charge in the discharge area,and the deposition of these opposite-polarity charges rapidly destroys the original space potential well in the discharge area and greatly reduces the space electric field strength.In addition,these opposite-polarity charges are redistributed with the development of thunderstorms.The space charge redistribution caused by lightning discharges partly accounts for the complexity of the charge structures in a thunderstorm,and the complexity gradually decreases with the charge neutralization process.
文摘The effects of the high voltage stress and other environmental conditions on crystalline silicon photovoltaic module performance have not been included in the IEC 61215 or other qualification standards. In this work, we are to evaluate the potential induced degradation on p type crystalline silicon PV modules by three cases, one case is in room temperature, 100% relative humidity water bath, another is in room temperature, the front sheet coverage with aluminum foil and the other is in the 85°C, 85% relative humidity climate chamber. All the samples are applied with the -1000 V bias to active layers, respectively. Our current-voltage measurements and electroluminescence results showed in these modules power loss of 37.74%, 11.29% and 49.62%, respectively. These test results have shown that among high voltage effects the climate chamber is the harshest and fastest test. In this article we also showed that the ethylene vinyl acetate volume resistivity and soda-lime glass ingredients are important factors to PID failure. The high volume resistivity which is more than 1014 Ω·cm and Na less contents glass will mitigate the PID effect to ensure PID free.
文摘At present,the Lu an Radio and Television Tower is the tallest building in Anhui Province,and it is easily struck by lightning during the thunderstorm season.In order to clearly understand the lightning environment around the TV tower,based on the lightning positioning monitoring data provided by the Anhui Meteorological Bureau,the distribution characteristics of six lightning parameters within 5 km of the TV tower were studied firstly.Secondly,combined with the field survey data,a soil model was established,and the distribution of ground potential and other related parameters were simulated using CDEGS software,which can provide certain reference for the subsequent lightning protection design and construction.
文摘Electric and magnetic fields generated by lightning cause a serious hazard to various systems.Now wind turbine installations with higher power capacity are increasing.Higher power capacity requires higher height and so there is more probability of lightning strike.Blades are the most probable components to be struck by lightning.The most common lightning protection system for the blades consists of several metallic receptors on the blade surface.Those are connected to the ground by metallic down-conductors placed inside the blade shell.This paper studies effects of the receptor configurations on protecting the blade against lightning strike.For this purpose,an analysis procedure based on finite element method(FEM)in COMSOL Multiphysics software environment is used.The voltage distribution around the blade is simulated for various configurations of receptors.The best configuration is presented.Simulations are performed on the blade model of a special wind turbine,which isVESTAS V47".
文摘There are two major protective methods against lightning outages on overhead distribution lines.One is a surge arrester,and the other is an overhead ground wire.The surge arresters have rather constant effect regardless of the cause of the lightning outage.On the other hand,the effect of an overhead ground wire is quite different in two major causes,the direct lightning hit and the induced overvoltage.It is sufficient to provide surge arresters with an interval of 300 m for protection against the induced overvoltage caused by the nearby lightning stroke.Use of an overhead ground wire together with surge arresters is effective for lightning protection against the direct lightning hit to a distribution line.Puncture of surge arresters is the popular outage when the outage caused by the insulation break decreases sufficiently.Also,the existence of nearby trees leads to the line break due to the side flash from a tree.Advanced lightning protection equipment with ZnO arrester components is popular in Japan.Modeling of a pole transformer and application of an electromagnetic analysis method,such as FDTD method,to surge phenomena is considerably advanced.
文摘In addition to the conventional Franklin Rod,many non-conventional air terminals are being used as lightning protection devices.As cited in previous works,these non-conventional devices emit space charge in the vicinity of the terminals during the process of lightning stroke.A number of factors affect the performance of these lightning protection devices,among them are geometry and dimension of the devices,location of the device above the ground,height of the cloud above the ground,and polarity of the lightning stroke.The performance of these lightning protection devices has been a topic of discussion by researchers for many years.Some studies focused on the magnitude of emission current from these devices as a criterion to evaluate their performances.The critical flashover voltage(CFO)between the devices and a metal screen simulating cloud can also be used as another criterion to evaluate the performance of the devices.Laboratory measurements were conducted in controlled conditions on different types of lightning protection devices to compare their performance.Four different types of devices were used in the present study:Franklin Rod,TerraStat models TS 100,TS 400,and Spline Ball Ionizer.The study focused on the CFO voltage of the air gap between devices and the metal screen.The CFO voltage was evaluated using standard switching and lightning impulses.The measurements were recorded for positive as well as negative polarity.The air gap between the devices and metal screen was selected at 2 m and 3 m.The results obtained provide a better understanding of the electrical performance of lightning protection devices.
基金supported by National Natural Science Foundation of China (No. 51475369)the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018JM1001)
文摘In order to research segmented diverters for aircraft lightning protection, a transient 2 D multiphysics model based on magnetohydrodynamics theory is proposed to predict the location of the arc plasma discharge and lightning channel, and to simulate the electrothermal behavior.Based on numerical calculation and preliminary analysis, factors that affect the breakdown voltage of the segmented diverter are discussed. The results show that the voltage increase rate of the voltage source, the width of the air gap between metal segments and the geometry of these segments influence the breakdown voltage of the strip. High-voltage tests of the segmented diverter are performed to reveal air breakdown of the strip and redirect the lightning current.Experimental and numerical results are compared to verify the correctness of the numerical model. The ionization of the air gap between metal segments and the breakdown voltage of the strip calculated by the model are qualitatively consistent with experimental results. The breakdown voltage of the segmented diverter is far lower than the lightning voltage. When a lightning strike occurs, the segmented diverter can be quickly ionized to form a plasma channel which can guide the lightning current well.
文摘The voltage uprating of existing overhead lines is an interesting solution for increasing the transmission of electricity, especially in areas where it is difficult to build new lines. If a line is uprated with minor changes of its design and without improvement of the grounding electrodes of towers, its lightning performance remains unchanged. The consequence is that the uprated line will have a lightning flashover rate very high compared to an overhead line of same nominal voltage but of standard design. One attractive solution to solve this problem is to use line arresters. The goal of this paper is to study the use of line arresters to achieve a satisfactory lightning performance of an overhead line uprated from 225 kV to 400 kV without major design modifications. In order to compare different strategies of line arrester installation the flashover rate is calculated based on a software able to launch automatically EMTP-RV. The software named LIPS has been developed under the cover of a partnership between Hydro-Quebec, RTE and EDF.