期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Estimation of Lightning-Generated NO_(x) in the Mainland of China Based on Cloud-to-Ground Lightning Location Data 被引量:1
1
作者 Qi LI Fengxia GUO +4 位作者 Xiaoyu JU Ze LIU Mingjun GAN Kun ZHANG Binbin CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第1期129-143,共15页
Lightning-generated nitrogen oxides(LNO_(x))have a major influence on the atmosphere and global climate change.Therefore,it is of great importance to obtain a more accurate estimation of LNO_(x).The aim of this study ... Lightning-generated nitrogen oxides(LNO_(x))have a major influence on the atmosphere and global climate change.Therefore,it is of great importance to obtain a more accurate estimation of LNO_(x).The aim of this study is to provide a reference for the accurate estimation of the total LNO_(x) in the mainland of China based on cloud-to-ground lightning(CG)location data from 2014 to 2018.The energy of each CG flash was based on the number of return strokes per CG flash,the peak current of each return stroke,and the assumed CG breakdown voltage.The energy of intracloud lightning(IC)was based on the estimated frequencies of IC and the assumed energy of each IC flash.Combining the energy of lightning and the number of nitric oxide(NO)molecules produced by unit energy(ρno),the total LNO_(x) production in the mainland of China was determined.The LNO_(x) in the mainland of China estimated in this study is in the range(0.157-0.321)×10^(9) kg per year[Tg(N)yr-1],which is on the high end of other scholars’works.Negative cloud-to-ground lightning(NCG)flashes produce the most moles of NO_(x),while positive cloud-to-ground lightning(PCG)flashes produce the least total moles of NO_(x).The breakdown voltage of PCG is greater than that of IC or NCG,while the latter has a greater output of LNO_(x). 展开更多
关键词 cloud-to-ground lightning location lightning peak current lightning breakdown voltage nitrogen oxide(NO_(x))
下载PDF
LLSDA: Design and Implementation of Lightning Location Data Analysis and Visualization
2
作者 Rong FAN Jingxiao LI Mingyuan LIU 《Meteorological and Environmental Research》 CAS 2023年第5期36-41,44,共7页
Visualizing lightning location data is necessary in analyzing and researching lightning activity patterns.This article uses C#and the cross-platform.NET framework to develop a lightning location data analysis class li... Visualizing lightning location data is necessary in analyzing and researching lightning activity patterns.This article uses C#and the cross-platform.NET framework to develop a lightning location data analysis class library and the data-driven client to help lightning researchers improve work efficiency by avoiding repeated wheel invention.Lightning Location System Data Analyzer(LLSDA)is a suite of software tools that includes a.NET class library for software developers and a desktop application for end users.It supports a wide range of lightning location data formats,such as the University of Washington Global Lightning Location System(WWLLN)and Beijing Huayun Dongfang ADTD Lightning Location System data format,and maintains scalability.The class library can easily read,parse,and analyze lightning location data,and combined with third-party frameworks can realize grid analysis.The desktop application can be combined with MeteoInfo(a GIS open-source project)for secondary development. 展开更多
关键词 lightning location system The World Wide lightning Location Network(WWLLN) ADTD MeteoInfo Global lightning Detection Network(GLD360) Austrian lightning Detection&Information System(ALDIS) Data-driven development Reusable software library
下载PDF
Temporal and Spatial Distribution of Lightning Activity in Ulanqab City
3
作者 Qiang MA 《Meteorological and Environmental Research》 CAS 2023年第1期60-62,共3页
From January 2020 to December 2021,Ulanqab Meteorological Bureau of Inner Mongolia used VLF/LF lightning locator to carry out three-dimensional lightning monitoring in Ulanqab City,and compared with ADTD lightning loc... From January 2020 to December 2021,Ulanqab Meteorological Bureau of Inner Mongolia used VLF/LF lightning locator to carry out three-dimensional lightning monitoring in Ulanqab City,and compared with ADTD lightning location data in the same period.The results show that both VLF/LF lightning locator and ADTD lightning locator had excellent monitoring ability for lightning during flood season in Ulanqab.VLF/LF lightning locator was slightly superior to ADTD lightning locator in observation accuracy,the observation ability of low-current cloud-to-ground lightning,intracloud lightning observation and so on.There were obvious temporal and spatial characteristics of cloud-to-ground lightning during flood season in Ulanqab,and there was a certain correlation between the areas where lightning appeared frequently and surface water.Intracloud lightning was mainly concentrated at a height of 1-7 km.Negative cloud-to-ground lightning accounted for about 75%of total cloud-to-ground lightning,and negative intracloud lightning accounted for 39%of total intracloud lightning. 展开更多
关键词 lightning location Cloud-to-ground lightning Intracloud lightning Temporal and spatial distribution
下载PDF
Lightning Nowcasting with an Algorithm of Thunderstorm Tracking Based on Lightning Location Data over the Beijing Area 被引量:1
4
作者 Abhay SRIVASTAVA Dongxia LIU +6 位作者 Chen XU Shanfeng YUAN Dongfang WANG Ogunsua BABALOLA Zhuling SUN Zhixiong CHEN Hongbo ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第1期178-188,共11页
A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources obser... A thunderstorm tracking algorithm is proposed to nowcast the possibility of lightning activity over an area of concern by using the total lightning data and neighborhood technique.The lightning radiation sources observed from the Beijing Lightning Network(BLNET)were used to obtain information about the thunderstorm cells,which are significantly valuable in real-time.The boundaries of thunderstorm cells were obtained through the neighborhood technique.After smoothing,these boundaries were used to track the movement of thunderstorms and then extrapolated to nowcast the lightning approaching in an area of concern.The algorithm can deliver creditable results prior to a thunderstorm arriving at the area of concern,with accuracies of 63%,80%,and 91%for lead times of 30,15,and 5 minutes,respectively.The real-time observations of total lightning appear to be significant for thunderstorm tracking and lightning nowcasting,as total lightning tracking could help to fill the observational gaps in radar reflectivity due to the attenuation by hills or other obstacles.The lightning data used in the algorithm performs well in tracking the active thunderstorm cells associated with lightning activities. 展开更多
关键词 neighborhood technique lightning nowcasting thunderstorm tracking lightning location data
下载PDF
Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region 被引量:1
5
作者 Xiushu QIE Shanfeng YUAN +24 位作者 Zhixiong CHEN Dongfeng WANG Dongxia LIU Mengyu SUN Zhuling SUN Abhay SRIVASTAVA Hongbo ZHANG Jingyu LU Hui XIAO Yongheng BI Liang FENG Ye TIAN Yan XU Rubin JIANG Mingyuan LIU Xian XIAO Shu DUAN Debin SU Chengyun SUN Wenjing XU Yijun ZHANG Gaopeng LU Da-Lin ZHANG Yan YIN Ye YU 《Science China Earth Sciences》 SCIE EI CSCD 2021年第1期10-26,共17页
The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan regio... The Dynamical-microphysical-electrical Processes in Severe Thunderstorms and Lightning Hazards(STORM973)project conducted coordinated comprehensive field observations of thunderstorms in the Beijing metropolitan region(BMR)during the warm season from 2014 to 2018.The aim of the project was to understand how dynamical,microphysical and electrical processes interact in severe thunderstorms in the BMR,and how to assimilate lightning data in numerical weather prediction models to improve severe thunderstorm forecasts.The platforms used in the field campaign included the Beijing Lightning Network(BLNET,consisting of 16 stations),2 X-band dual linear polarimetric Doppler radars,and 4 laser raindrop spectrometers.The collaboration also made use of the China Meteorological Administration’s mesoscale meteorological observation network in the Beijing-Tianjin-Hebei region.Although diverse thunderstorm types were documented,it was found that squall lines and multicell storms were the two major categories of severe thunderstorms with frequent lightning activity and extreme rainfall or unexpected local short-duration heavy rainfall resulting in inundations in the central urban area,influenced by the terrain and environmental conditions.The flash density maximums were found in eastern Changping District,central and eastern Shunyi District,and the central urban area of Beijing,suggesting that the urban heat island effect has a crucial role in the intensification of thunderstorms over Beijing.In addition,the flash rate associated with super thunderstorms can reach hundreds of flashes per minute in the central city regions.The super(5%of the total),strong(35%),and weak(60%)thunderstorms contributed about 37%,56%,and 7%to the total flashes in the BMR,respectively.Owing to the close connection between lightning activity and the thermodynamic and microphysical characteristics of the thunderstorms,the lightning flash rate can be used as an indicator of severe weather events,such as hail and short-duration heavy rainfall.Lightning data can also be assimilated into numerical weather prediction models to help improve the forecasting of severe convection and precipitation at the cloud-resolved scale,through adjusting or correcting the thermodynamic and microphysical parameters of the model. 展开更多
关键词 lightning 3D location Dual linear polarimetric Doppler radar Severe thunderstorm lightning data assimilation HAIL Short-term heavy precipitation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部