Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward high...Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward higher requirements for the application of joining technology of high-strength steel/Al dissimilar materials. Taking the new die-casting Al alloy body as an example, this paper systematically studies the progress of the latest joining methods of steel/Al dissimilar material with combination of two-layer plate and three-layer plate. By analyzing the joining technologies such as FSPR, RES, FDS and SPR, the technology and process characteristics of steel/Al dissimilar material joining are studied, and the joining technical feasibility and realization means of different material combination of the body are analyzed. The conditions of material combination, material thickness, material strength, flange height, preformed holes and joint spacing for achieving high-quality joining are given. The FSPR joining technology is developed and tested in order to meet with the joining of parts with DCAA and TFSS, especially for the joining of three-layer plates with them. It finds the method and technical basis for the realization of high quality joining of dissimilar materials, provides the early conditions for the application of large DCAA and TFSS parts in body-in-white, and meets the design requirements of new energy body. .展开更多
A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. Accor...A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.展开更多
With the development of automobile lightweight,it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping,which offers the possibility to reduce the weight of automobiles and mainta...With the development of automobile lightweight,it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping,which offers the possibility to reduce the weight of automobiles and maintain the safety requirement.In order to complete hot stamping,it is important to design the structure of parts reasonably,which is related with reasonable matching of strength.The objective of this paper is to guide the design of parts manufactured by hot stamping and find the forming technical requirements of vehicle performance.Through experiments,the paper obtains the stress and strain curves at different deformation temperatures and strain rates.Based on experimental data, the constitutive relationship model is established which can reflect the deformation capacity of ultra-high strength steel during the process of hot stamping.Combined with finite element simulation results of hot stamping by commercial software AUTOFORM,transfer path of load and matching law of strength,the paper determines the design criteria and forming technical requirements of parts manufactured by hot stamping.At the same time,the impact performance of front cross member internal plate is taken into consideration.展开更多
轻钢装配式结构施工周期短、抗震节能、可回收利用率高,但也存在热惰性差、重复热桥多、隔振性能差等缺陷。以CNKI数据库筛选出的有关轻钢装配式建筑的383篇文献和Web of Science核心合集的731篇文献为数据来源,利用CiteSpace对发文情...轻钢装配式结构施工周期短、抗震节能、可回收利用率高,但也存在热惰性差、重复热桥多、隔振性能差等缺陷。以CNKI数据库筛选出的有关轻钢装配式建筑的383篇文献和Web of Science核心合集的731篇文献为数据来源,利用CiteSpace对发文情况、研究热点及发展趋势进行可视化分析,为以后的相关研究提供参考。综述包括轻钢龙骨、轻钢轻质混凝土、轻钢框架等在内的典型装配式轻钢结构性能优化设计的研究现状。首先,从整体抗震性能、自攻螺钉连接、龙骨截面及腹板开孔、保温材料及构造角度分析了组合墙体力学性能优化设计的特点、效果和改进思路。之后,从增设保温材料、热桥阻断设计、相变储能应用和接缝密封处理4个方面提出优化墙体热工性能的方法和效果。最后,阐述了围护结构隔绝空气声、结构振动噪声及振动舒适度的优化设计方法,总结了多目标并行优化的研究现状和未来发展方向。展开更多
The high temperature anti-rutting performance,water stability and low temperature bending property of epoxy asphalt mixture with 0%,15%,25%,40%,and 70% granulated and circular lightweight aggregates by weight are test...The high temperature anti-rutting performance,water stability and low temperature bending property of epoxy asphalt mixture with 0%,15%,25%,40%,and 70% granulated and circular lightweight aggregates by weight are tested,respectively.The dynamic responses under the vehicle load and in the opening process are analyzed to obtain the mechanical responses of pavements by using the finite element method.The complicated structure including a steel deck and a waterproof adhesive layer is made to verify the bond strength of the 2451-type epoxy asphalt binder.Research results show that the epoxy asphalt mixtures with lightweight aggregate replacement percentages from 0% to 70% all satisfy the requirements for steel bridge pavements.The epoxy asphalt mixture with a 70% circular lightweight aggregate replacement percentage is recommended because of its smaller density when compared with other epoxy asphalt mixtures.The shear stress increases with the increase in the opening angle and achieves its maximum at the maximum opening angle of 85°.Test results show that the Tianjin Bascule Bridge can be used for first opening after a 3 d pavement conditioning.展开更多
文摘Green and low carbon promote the application and development of light-weight materials in body-in-white. Large-scale die-casting Al alloy (DCAA) and high-strength thermo-formed steel sheet (TFSS) have put forward higher requirements for the application of joining technology of high-strength steel/Al dissimilar materials. Taking the new die-casting Al alloy body as an example, this paper systematically studies the progress of the latest joining methods of steel/Al dissimilar material with combination of two-layer plate and three-layer plate. By analyzing the joining technologies such as FSPR, RES, FDS and SPR, the technology and process characteristics of steel/Al dissimilar material joining are studied, and the joining technical feasibility and realization means of different material combination of the body are analyzed. The conditions of material combination, material thickness, material strength, flange height, preformed holes and joint spacing for achieving high-quality joining are given. The FSPR joining technology is developed and tested in order to meet with the joining of parts with DCAA and TFSS, especially for the joining of three-layer plates with them. It finds the method and technical basis for the realization of high quality joining of dissimilar materials, provides the early conditions for the application of large DCAA and TFSS parts in body-in-white, and meets the design requirements of new energy body. .
基金Project(51208176)supported by the National Natural Science Foundation of ChinaProjects(2012M511187,2013T60493)supported by the China Postdoctoral Science FoundationProject(2015B17414)supported by the Fundamental Research Funds for the Central Universities,China
文摘A lightweight aggregate concrete-filled steel tube(LACFST) spatial truss beam was tested under bending load. The performance was studied by the analysis of the beam deflection and strains in its chords and webs. According to the test results, several assumptions were made to deduce the bearing capacity calculation method based on the force balance of the whole section. An optimal dimension relationship for the truss beam chords was proposed and verified by finite element analysis. Results show that the LACFST spatial truss beam failed after excessive deflection. The strain distribution agreed with Bernoulli-Euler theoretical prediction. The truss beam flexural bearing capacity calculation results matched test evidence with only a 3% difference between the two. Finite element analyses with different chord dimensions show that the ultimate bearing capacity increases as the chord dimensions increase when the chords have a diameter smaller than optimal one; otherwise, it remains almost unchanged as the chord dimensions increase.
基金Project in the National Science & Technology Pillar Program during the"Twelfth Five-year Plan"Period(No.2011BAG03B02No.2011BAG03B06)
文摘With the development of automobile lightweight,it is very necessary to apply the ultra-high strength steel parts manufactured by hot stamping,which offers the possibility to reduce the weight of automobiles and maintain the safety requirement.In order to complete hot stamping,it is important to design the structure of parts reasonably,which is related with reasonable matching of strength.The objective of this paper is to guide the design of parts manufactured by hot stamping and find the forming technical requirements of vehicle performance.Through experiments,the paper obtains the stress and strain curves at different deformation temperatures and strain rates.Based on experimental data, the constitutive relationship model is established which can reflect the deformation capacity of ultra-high strength steel during the process of hot stamping.Combined with finite element simulation results of hot stamping by commercial software AUTOFORM,transfer path of load and matching law of strength,the paper determines the design criteria and forming technical requirements of parts manufactured by hot stamping.At the same time,the impact performance of front cross member internal plate is taken into consideration.
文摘轻钢装配式结构施工周期短、抗震节能、可回收利用率高,但也存在热惰性差、重复热桥多、隔振性能差等缺陷。以CNKI数据库筛选出的有关轻钢装配式建筑的383篇文献和Web of Science核心合集的731篇文献为数据来源,利用CiteSpace对发文情况、研究热点及发展趋势进行可视化分析,为以后的相关研究提供参考。综述包括轻钢龙骨、轻钢轻质混凝土、轻钢框架等在内的典型装配式轻钢结构性能优化设计的研究现状。首先,从整体抗震性能、自攻螺钉连接、龙骨截面及腹板开孔、保温材料及构造角度分析了组合墙体力学性能优化设计的特点、效果和改进思路。之后,从增设保温材料、热桥阻断设计、相变储能应用和接缝密封处理4个方面提出优化墙体热工性能的方法和效果。最后,阐述了围护结构隔绝空气声、结构振动噪声及振动舒适度的优化设计方法,总结了多目标并行优化的研究现状和未来发展方向。
基金China Postdoctoral Science Foundation(No. 20110491342)Jiangsu Postdoctoral Science Foundation(No. 1101018C)the National Natural Science Foundation of China(No. 51178114,50908054)
文摘The high temperature anti-rutting performance,water stability and low temperature bending property of epoxy asphalt mixture with 0%,15%,25%,40%,and 70% granulated and circular lightweight aggregates by weight are tested,respectively.The dynamic responses under the vehicle load and in the opening process are analyzed to obtain the mechanical responses of pavements by using the finite element method.The complicated structure including a steel deck and a waterproof adhesive layer is made to verify the bond strength of the 2451-type epoxy asphalt binder.Research results show that the epoxy asphalt mixtures with lightweight aggregate replacement percentages from 0% to 70% all satisfy the requirements for steel bridge pavements.The epoxy asphalt mixture with a 70% circular lightweight aggregate replacement percentage is recommended because of its smaller density when compared with other epoxy asphalt mixtures.The shear stress increases with the increase in the opening angle and achieves its maximum at the maximum opening angle of 85°.Test results show that the Tianjin Bascule Bridge can be used for first opening after a 3 d pavement conditioning.