期刊文献+
共找到1,216篇文章
< 1 2 61 >
每页显示 20 50 100
A Lightweight Network with Dual Encoder and Cross Feature Fusion for Cement Pavement Crack Detection
1
作者 Zhong Qu Guoqing Mu Bin Yuan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期255-273,共19页
Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr... Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection. 展开更多
关键词 Shallow feature extraction module large kernel atrous convolution dual encoder lightweight network crack detection
下载PDF
Wafer map defect patterns classification based on a lightweight network and data augmentation 被引量:1
2
作者 Naigong Yu Huaisheng Chen +2 位作者 Qiao Xu Mohammad Mehedi Hasan Ouattara Sie 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第3期1029-1042,共14页
Accurately identifying defect patterns in wafer maps can help engineers find abnormal failure factors in production lines.During the wafer testing stage,deep learning methods are widely used in wafer defect detection ... Accurately identifying defect patterns in wafer maps can help engineers find abnormal failure factors in production lines.During the wafer testing stage,deep learning methods are widely used in wafer defect detection due to their powerful feature extraction capa-bilities.However,most of the current wafer defect patterns classification models have high complexity and slow detection speed,which are difficult to apply in the actual wafer production process.In addition,there is a data imbalance in the wafer dataset that seriously affects the training results of the model.To reduce the complexity of the deep model without affecting the wafer feature expression,this paper adjusts the structure of the dense block in the PeleeNet network and proposes a lightweight network WM‐PeleeNet based on the PeleeNet module.In addition,to reduce the impact of data imbalance on model training,this paper proposes a wafer data augmentation method based on a convolutional autoencoder by adding random Gaussian noise to the hidden layer.The method proposed in this paper has an average accuracy of 95.4%on the WM‐811K wafer dataset with only 173.643 KB of the parameters and 316.194 M of FLOPs,and takes only 22.99 s to detect 1000 wafer pictures.Compared with the original PeleeNet network without optimization,the number of parameters and FLOPs are reduced by 92.68%and 58.85%,respectively.Data augmentation on the minority class wafer map improves the average classification accuracy by 1.8%on the WM‐811K dataset.At the same time,the recognition accuracy of minority classes such as Scratch pattern and Donut pattern are significantly improved. 展开更多
关键词 convolutional autoencoder lightweight network wafer defect detection
下载PDF
Configuration Synthesis and Lightweight Networking of Deployable Mechanism Based on a Novel Pyramid Module
3
作者 Jinwei Guo Jianliang He +2 位作者 Guoxing Zhang Yongsheng Zhao Yundou Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期294-310,共17页
Deployable mechanism with preferable deployable performance,strong expansibility,and lightweight has attracted much attention because of their potential in aerospace.A basic deployable pyramid unit with good deployabi... Deployable mechanism with preferable deployable performance,strong expansibility,and lightweight has attracted much attention because of their potential in aerospace.A basic deployable pyramid unit with good deployability and expandability is proposed to construct a sizeable deployable mechanism.Firstly,the basic unit folding principle and expansion method is proposed.The configuration synthesis method of adding constraint chains of spatial closed-loop mechanism is used to synthesize the basic unit.Then,the degree of freedom of the basic unit is analyzed using the screw theory and the link dismantling method.Next,the three-dimensional models of the pyramid unit,expansion unit,and array unit are established,and the folding motion simulation analysis is carried out.Based on the number of components,weight reduction rate,and deployable rate,the performance characteristics of the three types of mechanisms are described in detail.Finally,prototypes of the pyramid unit,combination unit,and expansion unit are developed to verify further the correctness of the configuration synthesis based on the pyramid.The proposed deployable mechanism provides aference for the design and application of antennas with a large aperture,high deployable rate,and lightweight.It has a good application prospect in the aerospace field. 展开更多
关键词 Pyramid unit Deployable mechanism Configuration synthesis Structural design lightweight networking
下载PDF
CMMCAN:Lightweight Feature Extraction and Matching Network for Endoscopic Images Based on Adaptive Attention
4
作者 Nannan Chong Fan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2761-2783,共23页
In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clini... In minimally invasive surgery,endoscopes or laparoscopes equipped with miniature cameras and tools are used to enter the human body for therapeutic purposes through small incisions or natural cavities.However,in clinical operating environments,endoscopic images often suffer from challenges such as low texture,uneven illumination,and non-rigid structures,which affect feature observation and extraction.This can severely impact surgical navigation or clinical diagnosis due to missing feature points in endoscopic images,leading to treatment and postoperative recovery issues for patients.To address these challenges,this paper introduces,for the first time,a Cross-Channel Multi-Modal Adaptive Spatial Feature Fusion(ASFF)module based on the lightweight architecture of EfficientViT.Additionally,a novel lightweight feature extraction and matching network based on attention mechanism is proposed.This network dynamically adjusts attention weights for cross-modal information from grayscale images and optical flow images through a dual-branch Siamese network.It extracts static and dynamic information features ranging from low-level to high-level,and from local to global,ensuring robust feature extraction across different widths,noise levels,and blur scenarios.Global and local matching are performed through a multi-level cascaded attention mechanism,with cross-channel attention introduced to simultaneously extract low-level and high-level features.Extensive ablation experiments and comparative studies are conducted on the HyperKvasir,EAD,M2caiSeg,CVC-ClinicDB,and UCL synthetic datasets.Experimental results demonstrate that the proposed network improves upon the baseline EfficientViT-B3 model by 75.4%in accuracy(Acc),while also enhancing runtime performance and storage efficiency.When compared with the complex DenseDescriptor feature extraction network,the difference in Acc is less than 7.22%,and IoU calculation results on specific datasets outperform complex dense models.Furthermore,this method increases the F1 score by 33.2%and accelerates runtime by 70.2%.It is noteworthy that the speed of CMMCAN surpasses that of comparative lightweight models,with feature extraction and matching performance comparable to existing complex models but with faster speed and higher cost-effectiveness. 展开更多
关键词 Feature extraction and matching lightweighted network medical images ENDOSCOPIC ATTENTION
下载PDF
A Study on Enhancing Chip Detection Efficiency Using the Lightweight Van-YOLOv8 Network
5
作者 Meng Huang Honglei Wei Xianyi Zhai 《Computers, Materials & Continua》 SCIE EI 2024年第4期531-547,共17页
In pursuit of cost-effective manufacturing,enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging,a circular marker on the f... In pursuit of cost-effective manufacturing,enterprises are increasingly adopting the practice of utilizing recycled semiconductor chips.To ensure consistent chip orientation during packaging,a circular marker on the front side is employed for pin alignment following successful functional testing.However,recycled chips often exhibit substantial surface wear,and the identification of the relatively small marker proves challenging.Moreover,the complexity of generic target detection algorithms hampers seamless deployment.Addressing these issues,this paper introduces a lightweight YOLOv8s-based network tailored for detecting markings on recycled chips,termed Van-YOLOv8.Initially,to alleviate the influence of diminutive,low-resolution markings on the precision of deep learning models,we utilize an upscaling approach for enhanced resolution.This technique relies on the Super-Resolution Generative Adversarial Network with Extended Training(SRGANext)network,facilitating the reconstruction of high-fidelity images that align with input specifications.Subsequently,we replace the original YOLOv8smodel’s backbone feature extraction network with the lightweight VanillaNetwork(VanillaNet),simplifying the branch structure to reduce network parameters.Finally,a Hybrid Attention Mechanism(HAM)is implemented to capture essential details from input images,improving feature representation while concurrently expediting model inference speed.Experimental results demonstrate that the Van-YOLOv8 network outperforms the original YOLOv8s on a recycled chip dataset in various aspects.Significantly,it demonstrates superiority in parameter count,computational intricacy,precision in identifying targets,and speed when compared to certain prevalent algorithms in the current landscape.The proposed approach proves promising for real-time detection of recycled chips in practical factory settings. 展开更多
关键词 lightweight neural networks attention mechanisms image super-resolution enhancement feature extraction small object detection
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
6
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification lightweight Convolutional Neural network Depthwise Dilated Separable Convolution Hierarchical Multi-Scale Feature Fusion
下载PDF
Residual Feature Attentional Fusion Network for Lightweight Chest CT Image Super-Resolution 被引量:1
7
作者 Kun Yang Lei Zhao +4 位作者 Xianghui Wang Mingyang Zhang Linyan Xue Shuang Liu Kun Liu 《Computers, Materials & Continua》 SCIE EI 2023年第6期5159-5176,共18页
The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study s... The diagnosis of COVID-19 requires chest computed tomography(CT).High-resolution CT images can provide more diagnostic information to help doctors better diagnose the disease,so it is of clinical importance to study super-resolution(SR)algorithms applied to CT images to improve the reso-lution of CT images.However,most of the existing SR algorithms are studied based on natural images,which are not suitable for medical images;and most of these algorithms improve the reconstruction quality by increasing the network depth,which is not suitable for machines with limited resources.To alleviate these issues,we propose a residual feature attentional fusion network for lightweight chest CT image super-resolution(RFAFN).Specifically,we design a contextual feature extraction block(CFEB)that can extract CT image features more efficiently and accurately than ordinary residual blocks.In addition,we propose a feature-weighted cascading strategy(FWCS)based on attentional feature fusion blocks(AFFB)to utilize the high-frequency detail information extracted by CFEB as much as possible via selectively fusing adjacent level feature information.Finally,we suggest a global hierarchical feature fusion strategy(GHFFS),which can utilize the hierarchical features more effectively than dense concatenation by progressively aggregating the feature information at various levels.Numerous experiments show that our method performs better than most of the state-of-the-art(SOTA)methods on the COVID-19 chest CT dataset.In detail,the peak signal-to-noise ratio(PSNR)is 0.11 dB and 0.47 dB higher on CTtest1 and CTtest2 at×3 SR compared to the suboptimal method,but the number of parameters and multi-adds are reduced by 22K and 0.43G,respectively.Our method can better recover chest CT image quality with fewer computational resources and effectively assist in COVID-19. 展开更多
关键词 SUPER-RESOLUTION COVID-19 chest CT lightweight network contextual feature extraction attentional feature fusion
下载PDF
Image super‐resolution via dynamic network 被引量:1
8
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Lightweight Classification Network for Pulmonary Tuberculosis Based on CT Images
9
作者 Junlin Tian Yi Zhang +2 位作者 Junqiang Lei Chunyou Sun Gang Hu 《Journal of Artificial Intelligence and Technology》 2023年第1期25-31,共7页
With the continuous development of medical informatics and digital diagnosis,the classification of tuberculosis(TB)cases from computed tomography(CT)images of the lung based on deep learning is an important guiding ai... With the continuous development of medical informatics and digital diagnosis,the classification of tuberculosis(TB)cases from computed tomography(CT)images of the lung based on deep learning is an important guiding aid in clinical diagnosis and treatment.Due to its potential application in medical image classification,this task has received extensive research attention.Existing related neural network techniques are still challenging in terms of feature extraction of global contextual information of images and network complexity in achieving image classification.To address these issues,this paper proposes a lightweight medical image classification network based on a combination of Transformer and convolutional neural network(CNN)for the classification of TB cases from lung CT.The method mainly consists of a fusion of the CNN module and the Transformer module,exploiting the advantages of both in order to accomplish a more accurate classification task.On the one hand,the CNN branch supplements the Transformer branch with basic local feature information in the low level;on the other hand,in the middle and high levels of the model,the CNN branch can also provide the Transformer architecture with different local and global feature information to the Transformer architecture to enhance the ability of the model to obtain feature information and improve the accuracy of image classification.A shortcut is used in each module of the network to solve the problem of poor model results due to gradient divergence and to optimize the effectiveness of TB classification.The proposed lightweight model can well solve the problem of long training time in the process of TB classification of lung CT and improve the speed of classification.The proposed method was validated on a CT image data set provided by the First Hospital of Lanzhou University.The experimental results show that the proposed lightweight classification network for TB based on CT medical images of lungs can fully extract the feature information of the input images and obtain high-accuracy classification results. 展开更多
关键词 tuberculosis case classification CNN TRANSFORMER lightweight network
下载PDF
A network lightweighting method for difficult segmentation of 3D medical images
10
作者 KANG Li 龚智鑫 +1 位作者 黄建军 ZHOU Ziqi 《中国体视学与图像分析》 2023年第4期390-400,共11页
Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions requir... Currently,deep learning is widely used in medical image segmentation and has achieved good results.However,3D medical image segmentation tasks with diverse lesion characters,blurred edges,and unstable positions require complex networks with a large number of parameters.It is computationally expensive and results in high requirements on equipment,making it hard to deploy the network in hospitals.In this work,we propose a method for network lightweighting and applied it to a 3D CNN based network.We experimented on a COVID-19 lesion segmentation dataset.Specifically,we use three cascaded one-dimensional convolutions to replace a 3D convolution,and integrate instance normalization with the previous layer of one-dimensional convolutions to accelerate network inference.In addition,we simplify test-time augmentation and deep supervision of the network.Experiments show that the lightweight network can reduce the prediction time of each sample and the memory usage by 50%and reduce the number of parameters by 60%compared with the original network.The training time of one epoch is also reduced by 50%with the segmentation accuracy dropped within the acceptable range. 展开更多
关键词 3D medical image segmentation 3D U-Net lightweight network COVID-19 lesion segmentation
下载PDF
Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition 被引量:1
11
作者 Chang Zhang Ruiwen Ni +2 位作者 Ye Mu Yu Sun Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2023年第1期983-994,共12页
In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of ... In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of pattern recognition.The research and development of high-efficiency,highquality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective.This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network(CNN)model and proposes a recognitionmodel that combines amulti-scale convolution module with a neural network model based on Visual Geometry Group(VGG).The accuracy and loss of the training set and the test set are used to evaluate the performance of the model.The test accuracy of this model is 97.1%that has increased 5.87%over VGG.Furthermore,the memory requirement is 26.1M,only 1.6%of the VGG.Experiment results show that this model performs better in terms of accuracy,recognition speed and memory size. 展开更多
关键词 Rice leaf diseases deep learning lightweight convolution neural networks VGG
下载PDF
Lightweight Malicious Code Classification Method Based on Improved Squeeze Net
12
作者 Li Li Youran Kong Qing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期551-567,共17页
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw... With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations. 展开更多
关键词 lightweight neural network malicious code classification feature slicing feature splicing multi-size depthwise separable convolution
下载PDF
Low-altitude small-sized object detection using lightweight feature-enhanced convolutional neural network 被引量:9
13
作者 YE Tao ZHAO Zongyang +2 位作者 ZHANG Jun CHAI Xinghua ZHOU Fuqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期841-853,共13页
Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balanc... Unauthorized operations referred to as“black flights”of unmanned aerial vehicles(UAVs)pose a significant danger to public safety,and existing low-attitude object detection algorithms encounter difficulties in balancing detection precision and speed.Additionally,their accuracy is insufficient,particularly for small objects in complex environments.To solve these problems,we propose a lightweight feature-enhanced convolutional neural network able to perform detection with high precision detection for low-attitude flying objects in real time to provide guidance information to suppress black-flying UAVs.The proposed network consists of three modules.A lightweight and stable feature extraction module is used to reduce the computational load and stably extract more low-level feature,an enhanced feature processing module significantly improves the feature extraction ability of the model,and an accurate detection module integrates low-level and advanced features to improve the multiscale detection accuracy in complex environments,particularly for small objects.The proposed method achieves a detection speed of 147 frames per second(FPS)and a mean average precision(mAP)of 90.97%for a dataset composed of flying objects,indicating its potential for low-altitude object detection.Furthermore,evaluation results based on microsoft common objects in context(MS COCO)indicate that the proposed method is also applicable to object detection in general. 展开更多
关键词 unmanned aerial vehicle(UAV) deep learning lightweight network object detection low-attitude
下载PDF
Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet 被引量:4
14
作者 Helong Yu Xianhe Cheng +2 位作者 Ziqing Li Qi Cai Chunguang Bi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第9期711-738,共28页
To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease rec... To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks,a lightweight ResNet(LW-ResNet)model for apple disease recognition is proposed.Based on the deep residual network(ResNet18),the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features.By improving the identity mapping structure to reduce information loss.By introducing the efficient channel attention module(ECANet)to suppress noise from a complex background.The experimental results show that the average precision,recall and F1-score of the LW-ResNet on the test set are 97.80%,97.92%and 97.85%,respectively.The parameter memory is 2.32 MB,which is 94%less than that of ResNet18.Compared with the classic lightweight networks SqueezeNet and MobileNetV2,LW-ResNet has obvious advantages in recognition performance,speed,parameter memory requirement and time complexity.The proposed model has the advantages of low computational cost,low storage cost,strong real-time performance,high identification accuracy,and strong practicability,which can meet the needs of real-time identification task of apple leaf disease on resource-constrained devices. 展开更多
关键词 Apple disease recognition deep residual network multi-scale feature efficient channel attention module lightweight network
下载PDF
High performance“non-local”generic face reconstruction model using the lightweight Speckle-Transformer(SpT)UNet 被引量:1
15
作者 Yangyundou Wang Hao Wang Min Gu 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2023年第2期1-9,共9页
Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”k... Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively. 展开更多
关键词 speckle reconstruction non-local model generic face images lightweight network
下载PDF
Research on Detection and Identification of Dense Rebar Based on Lightweight Network
16
作者 Fang Qu Caimao Li +2 位作者 Kai Peng Cong Qu Chengrong Lin 《国际计算机前沿大会会议论文集》 2020年第1期440-446,共7页
Target detection technology has been widely used,while it is less applied in portable equipment as it has certain requirements for devices.For instance,the inventory of rebar is still manually counted at present.In th... Target detection technology has been widely used,while it is less applied in portable equipment as it has certain requirements for devices.For instance,the inventory of rebar is still manually counted at present.In this paper,a lightweight network that adapts mobile devices is proposed to accomplish the task more intelligently and efficiently.Based on the existing method of detection and recognition of dense small objects,the research of rebar recognition was implemented.After designing the multi-resolution input model and training the data set of rebar,the efficiency of detection was improved significantly.Experiments prove that the method proposed has the advantages of higher detection degree,fewer model parameters,and shorter training time for rebar recognition. 展开更多
关键词 Target detection Object recognition Rebar recognition lightweight network
原文传递
A Lightweight Electronic Water Pump Shell Defect Detection Method Based on Improved YOLOv5s
17
作者 Qunbiao Wu Zhen Wang +2 位作者 Haifeng Fang Junji Chen Xinfeng Wan 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期961-979,共19页
For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surf... For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surface defect detection,a lightweight detection method based on an improved YOLOv5s method is proposed to replace the traditional manual detection methods.In this method,the MobileNetV3 module replaces the backbone network of YOLOv5s,depth-separable convolution is introduced,the parameters and calculations are reduced,and CIoU_Loss is used as the loss function of the boundary box regression to improve its detection accuracy.A dataset of electronic pump shell defects is established,and the performance of the improved method is evaluated by comparing it with that of the original method.The results show that the parameters and FLOPs are reduced by 49.83%and 61.59%,respectively,compared with the original YOLOv5s model,and the detection accuracy is improved by 1.74%,which is an indication of the superiority of the improved method.To further verify the universality of the improved method,it is compared with the results using the original method on the PASCALVOC2007 dataset,which verifies that it yields better performance.In summary,the improved lightweight method can be used for the real-time detection of electronic water pump shell defects. 展开更多
关键词 Electronic water pump shell surface defect detection lightweight network loss function
下载PDF
Face Age Estimation Based on CSLBP and Lightweight Convolutional Neural Network 被引量:1
18
作者 Yang Wang Ying Tian Ou Tian 《Computers, Materials & Continua》 SCIE EI 2021年第11期2203-2216,共14页
As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of ... As the use of facial attributes continues to expand,research into facial age estimation is also developing.Because face images are easily affected by factors including illumination and occlusion,the age estimation of faces is a challenging process.This paper proposes a face age estimation algorithm based on lightweight convolutional neural network in view of the complexity of the environment and the limitations of device computing ability.Improving face age estimation based on Soft Stagewise Regression Network(SSR-Net)and facial images,this paper employs the Center Symmetric Local Binary Pattern(CSLBP)method to obtain the feature image and then combines the face image and the feature image as network input data.Adding feature images to the convolutional neural network can improve the accuracy as well as increase the network model robustness.The experimental results on IMDB-WIKI and MORPH 2 datasets show that the lightweight convolutional neural network method proposed in this paper reduces model complexity and increases the accuracy of face age estimations. 展开更多
关键词 Face age estimation lightweight convolutional neural network CSLBP SSR-Net
下载PDF
结合CWT和LightweightNet的滚动轴承实时故障诊断方法
19
作者 李飞龙 和伟辉 +1 位作者 刘立芳 齐小刚 《智能系统学报》 CSCD 北大核心 2023年第3期496-505,共10页
针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征... 针对普通的深度学习算法用于轴承故诊断分类时计算量大、消耗成本高的问题,提出一种结合连续小波变换和轻量级神经网络的滚动轴承实时故障诊断方法。首先,使用Morlet母小波函数对轴承振动加速度数据进行连续小波变换,提取出时频域特征并将一维信号转换成二维图片;然后,结合分组卷积、通道混洗、倒残差结构等轻量级神经网络设计元素设计一个轻量级卷积神经网络LightweightNet用于时频图片的故障分类,LightweightNet网络在保证具有足够特征提取能力的同时还具有轻量级特点。使用凯斯西储大学轴承故障数据集进行实验表明,本方法相比于其他使用经典轻量级神经网络的方法具有更少的参数、最高的准确率和更快的诊断速度,基本可以实现滚动轴承的实时故障诊断,且在内存消耗与模型存储占用空间方面远小于其他同类方法。 展开更多
关键词 滚动轴承 故障诊断 连续小波变换 时频域特征 轻量级神经网络 分组卷积 通道混洗 倒残差结构
下载PDF
基于轻量化网络与增强多尺度特征融合的绝缘子缺陷检测 被引量:3
20
作者 陈奎 刘晓 +2 位作者 贾立娇 方永丽 赵昌新 《高电压技术》 EI CAS CSCD 北大核心 2024年第3期1289-1300,I0025,共13页
随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先... 随着无人机搭载目标检测算法在输电杆塔绝缘子巡检领域的发展,针对绝缘子缺陷检测速度较低,网络复杂度高且缺陷小目标难以准确检测的问题,提出一种基于轻量化网络与增强多尺度特征融合的YOLOv5-3S-4PH模型进行绝缘子缺陷实时检测。首先将重构的ShuffleNetV2-Stem-SPP(3S)网络作为YOLOv5的主干网络,显著减小了网络的参数量和计算量;其次引入针对小目标的增强多尺度特征融合网络以及4个预测头,来增强网络对绝缘子缺陷的感知能力,并结合Mosaic-9数据增强、CIoU损失函数进一步补偿轻量化导致的检测精度损失;最后将其应用到自制绝缘子数据集进行验证。实验结果表明,该文所提出的模型相对于未改进的YOLOv5,全类平均精度提高了3%,检测速度提高了81.8%,参数量、计算量分别压缩了82.4%、67%。因此,所提出的模型更适合部署在无人机平台上进行绝缘子缺陷的实时监测。 展开更多
关键词 绝缘子缺陷检测 YOLOv5 轻量化 ShuffleNetV2网络 小目标检测 无人机
下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部