针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目...针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。展开更多
With the increasing demand for power in society,there is much live equipment in substations,and the safety and standardization of live working of workers are facing challenges.Aiming at these problems of scene complex...With the increasing demand for power in society,there is much live equipment in substations,and the safety and standardization of live working of workers are facing challenges.Aiming at these problems of scene complexity and object diversity in the real-time detection of the live working safety of substation workers,an adaptive multihead structure and lightweight feature pyramid-based network(AHLNet)is proposed in this study,which is based on YOLOV3.First,we take AH-Darknet53 as the backbone network of YOLOV3,which can introduce an adaptive multihead(AMH)structure,reduce the number of network parameters,and improve the feature extraction ability of the backbone network.Second,to reduce the number of convolution layers of the deeper feature map,a lightweight feature pyramid network(LFPN)is proposed,which can perform feature fusion in advance to alleviate the problem of feature imbalance and gradient disappearance.Finally,the proposed AHLNet is evaluated on the datasets of 16 categories of substation safety operation scenarios,and the average prediction accuracy MAP_(50)reaches 82.10%.Compared with YOLOV3,MAP_(50)is increased by 2.43%,and the number of parameters is 90 M,which is only 38%of the number of parameters of YOLOV3.In addition,the detection speed is basically the same as that of YOLOV3,which can meet the real-time and accurate detection requirements for the safe operation of substation staff.展开更多
文摘针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。
基金supported by the General Scientific Research Project of the Education Department of Zhejiang Province,China(No.Y202146060).
文摘With the increasing demand for power in society,there is much live equipment in substations,and the safety and standardization of live working of workers are facing challenges.Aiming at these problems of scene complexity and object diversity in the real-time detection of the live working safety of substation workers,an adaptive multihead structure and lightweight feature pyramid-based network(AHLNet)is proposed in this study,which is based on YOLOV3.First,we take AH-Darknet53 as the backbone network of YOLOV3,which can introduce an adaptive multihead(AMH)structure,reduce the number of network parameters,and improve the feature extraction ability of the backbone network.Second,to reduce the number of convolution layers of the deeper feature map,a lightweight feature pyramid network(LFPN)is proposed,which can perform feature fusion in advance to alleviate the problem of feature imbalance and gradient disappearance.Finally,the proposed AHLNet is evaluated on the datasets of 16 categories of substation safety operation scenarios,and the average prediction accuracy MAP_(50)reaches 82.10%.Compared with YOLOV3,MAP_(50)is increased by 2.43%,and the number of parameters is 90 M,which is only 38%of the number of parameters of YOLOV3.In addition,the detection speed is basically the same as that of YOLOV3,which can meet the real-time and accurate detection requirements for the safe operation of substation staff.