期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Co-pyrolysis of bituminous coal and biomass in a pressured fluidized bed 被引量:8
1
作者 Yong Huang Ningbo Wang +2 位作者 Qiaoxia Liu Wusheng Wang Xiaoxun Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第7期1666-1673,共8页
An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature wa... An experimental study on co-pyrolysis of bituminous coal and biomass was performed in a pressured fluidized bed reactor.The blend ratio of biomass in the mixture was varied between 0 and 100 wt%,and the temperature was over a range of 550–650℃ under 1.0 MPa pressure with different atmospheres.On the basis of the individual pyrolysis behavior of bituminous coal and biomass,the influences of the biomass blending ratio,temperature,pressure and atmosphere on the product distribution were investigated.The results indicated that there existed a synergetic effect in the co-pyrolysis of bituminous coal and biomass in this pressured fluidized bed reactor,especially when the condition of bituminous coal and biomass blend ratio of 70:30(w/w),600℃,and 0.3 MPa was applied.The addition of biomass influenced the tar and char yields and gas and tar composition during co-pyrolysis.The tar yields were higher than the calculated values from individual pyrolysis of each fuel,and consequently the char yields were lower.The experimental results showed that the composition of the gaseous products was not in accordance with those of their individual fuel.The improvement of composition in tar also indicated synergistic effect in the co-pyrolysis. 展开更多
关键词 Bituminous COAL biomass co-pyrolysis Pressured fluidized BED synergistic effect
下载PDF
褐煤与生物质共热解过程的协同效应 被引量:10
2
作者 金会心 朱明燕 +3 位作者 吴复中 王眉龙 王洋 李辉 《煤炭转化》 CAS CSCD 北大核心 2016年第3期34-38,共5页
通过热重分析的方法对褐煤、生物质及褐煤生物质混合物的热解特性进行研究,以考察生物质与褐煤共热解过程中是否存在协同效应,结果表明:将褐煤与生物质按1∶1(质量比)的比例混合后,其初始热解温度及挥发分最大释放峰出现温度与生物质单... 通过热重分析的方法对褐煤、生物质及褐煤生物质混合物的热解特性进行研究,以考察生物质与褐煤共热解过程中是否存在协同效应,结果表明:将褐煤与生物质按1∶1(质量比)的比例混合后,其初始热解温度及挥发分最大释放峰出现温度与生物质单独热解基本相同,热解终温与褐煤相比大幅度提前,混合物热解在各个阶段的失重率均大于其单独热解失重率的平均值.褐煤、生物质及其混合物的热解过程可以用一级和二级热解反应动力学模型描述,通过计算动力学参数,发现在整个主要热解过程中,混合物在各个温度段的E值均小于褐煤或生物质单独热解时的E值,热解反应更加容易进行.证明了生物质对褐煤的热解有促进作用,褐煤与生物质在共热解过程中存在协同效应. 展开更多
关键词 褐煤 生物质 共热解 协同效应
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部