期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Modified likelihood ratio test for homogeneity in normal mixtures with two samples
1
作者 QIN Yong-song LEI Qing-zhu 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第1期113-119,共7页
This paper investigates the modified likelihood ratio test(LRT) for homogeneity in normal mixtures of two samples with mixing proportions unknown. It is proved that the limit distribution of the modified likelihood ... This paper investigates the modified likelihood ratio test(LRT) for homogeneity in normal mixtures of two samples with mixing proportions unknown. It is proved that the limit distribution of the modified likelihood ratio test is X^2(1). 展开更多
关键词 mixture model likelihood ratio test asymptotic distribution.
下载PDF
Gaussian mixture model clustering with completed likelihood minimum message length criterion 被引量:1
2
作者 曾洪 卢伟 宋爱国 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期43-47,共5页
An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the ... An improved Gaussian mixture model (GMM)- based clustering method is proposed for the difficult case where the true distribution of data is against the assumed GMM. First, an improved model selection criterion, the completed likelihood minimum message length criterion, is derived. It can measure both the goodness-of-fit of the candidate GMM to the data and the goodness-of-partition of the data. Secondly, by utilizing the proposed criterion as the clustering objective function, an improved expectation- maximization (EM) algorithm is developed, which can avoid poor local optimal solutions compared to the standard EM algorithm for estimating the model parameters. The experimental results demonstrate that the proposed method can rectify the over-fitting tendency of representative GMM-based clustering approaches and can robustly provide more accurate clustering results. 展开更多
关键词 Gaussian mixture model non-Gaussian distribution model selection expectation-maximization algorithm completed likelihood minimum message length criterion
下载PDF
Modified likelihood ratio test for homogeneity in bivariate normal mixtures with presence of a structural parameter
3
作者 QIN YongSong LEI QingZhu 《Science China Mathematics》 SCIE 2008年第10期1871-1882,共12页
This paper investigates the asymptotic properties of the modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models with an unknown structural parameter. It is shown that the modifi... This paper investigates the asymptotic properties of the modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models with an unknown structural parameter. It is shown that the modified likelihood ratio statistic has χ22 null limiting distribution. 展开更多
关键词 mixture model modified likelihood ratio test asymptotic distribution 62F03 62F05
原文传递
A MODIFIED LIKELIHOOD RATIO TEST FOR HOMOGENEITY IN BIVARIATE NORMAL MIXTURES OF TWO SAMPLES
4
作者 Qingzhu LEI·Yongsong QINSchool of Mathematical Sciences,Guangxi Normal University,Guilin 541004,China. 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期460-468,共9页
This paper investigates the asymptotic properties of a modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models of two samples. The asymptotic null distribution of the modified li... This paper investigates the asymptotic properties of a modified likelihood ratio statistic for testing homogeneity in bivariate normal mixture models of two samples. The asymptotic null distribution of the modified likelihood ratio statistic is found to be X2^2, where X2^2 is a chi-squared distribution with 2 degrees of freedom. 展开更多
关键词 Asymptotic distribution mixture model likelihood ratio test.
原文传递
Variable Selection for Robust Mixture Regression Model with Skew Scale Mixtures of Normal Distributions
5
作者 Tingzhu Chen Wanzhou Ye 《Advances in Pure Mathematics》 2022年第3期109-124,共16页
In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the vari... In this paper, we propose a robust mixture regression model based on the skew scale mixtures of normal distributions (RMR-SSMN) which can accommodate asymmetric, heavy-tailed and contaminated data better. For the variable selection problem, the penalized likelihood approach with a new combined penalty function which balances the SCAD and l<sub>2</sub> penalty is proposed. The adjusted EM algorithm is presented to get parameter estimates of RMR-SSMN models at a faster convergence rate. As simulations show, our mixture models are more robust than general FMR models and the new combined penalty function outperforms SCAD for variable selection. Finally, the proposed methodology and algorithm are applied to a real data set and achieve reasonable results. 展开更多
关键词 Robust mixture Regression model Skew Scale mixtures of normal distributions EM Algorithm SCAD Penalty
下载PDF
Joint modelling of location and scale parameters of the skew-normal distribution 被引量:2
6
作者 LI Hui-qiong WU Liu-cang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第3期265-272,共8页
Joint location and scale models of the skew-normal distribution provide useful ex- tension for joint mean and variance models of the normal distribution when the data set under consideration involves asymmetric outcom... Joint location and scale models of the skew-normal distribution provide useful ex- tension for joint mean and variance models of the normal distribution when the data set under consideration involves asymmetric outcomes. This paper focuses on the maximum likelihood estimation of joint location and scale models of the skew-normal distribution. The proposed procedure can simultaneously estimate parameters in the location model and the scale model. Simulation studies and a real example are used to illustrate the proposed methodologies. 展开更多
关键词 joint mean and variance models of the normal distribution joint location and scale models ofthe skew-normal distribution maximum likelihood estimators skew-normal distribution.
下载PDF
A skew–normal mixture of joint location, scale and skewness models 被引量:1
7
作者 LI Hui-qiong WU Liu-cang YI Jie-yi 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2016年第3期283-295,共13页
Normal mixture regression models are one of the most important statistical data analysis tools in a heterogeneous population. When the data set under consideration involves asymmetric outcomes, in the last two decades... Normal mixture regression models are one of the most important statistical data analysis tools in a heterogeneous population. When the data set under consideration involves asymmetric outcomes, in the last two decades, the skew normal distribution has been shown beneficial in dealing with asymmetric data in various theoretic and applied problems. In this paper, we propose and study a novel class of models: a skew-normal mixture of joint location, scale and skewness models to analyze the heteroscedastic skew-normal data coming from a heterogeneous population. The issues of maximum likelihood estimation are addressed. In particular, an Expectation-Maximization (EM) algorithm for estimating the model parameters is developed. Properties of the estimators of the regression coefficients are evaluated through Monte Carlo experiments. Results from the analysis of a real data set from the Body Mass Index (BMI) data are presented. 展开更多
关键词 mixture regression models mixture of joint location scale and skewness models EM algorithm maximum likelihood estimation skew-normal mixtures
下载PDF
Statistical Inference in Generalized Linear Mixed Models by Joint Modelling Mean and Covariance of Non-Normal Random Effects
8
作者 Yin Chen Yu Fei Jianxin Pan 《Open Journal of Statistics》 2015年第6期568-584,共17页
Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and varianc... Generalized linear mixed models (GLMMs) are typically constructed by incorporating random effects into the linear predictor. The random effects are usually assumed to be normally distributed with mean zero and variance-covariance identity matrix. In this paper, we propose to release random effects to non-normal distributions and discuss how to model the mean and covariance structures in GLMMs simultaneously. Parameter estimation is solved by using Quasi-Monte Carlo (QMC) method through iterative Newton-Raphson (NR) algorithm very well in terms of accuracy and stabilization, which is demonstrated by real binary salamander mating data analysis and simulation studies. 展开更多
关键词 Generalized Linear Mixed models MULTIVARIATE t distribution MULTIVARIATE mixture normal distribution Quasi-Monte Carlo NEWTON-RAPHSON Joint modelling of Mean and COVARIANCE
下载PDF
Comparative Research on the Stock Return Distributional Models
9
作者 ZHANG Qiang 《Journal of Modern Accounting and Auditing》 2007年第2期35-40,共6页
This paper compares the stock return distribution models of mixture normal distribution, mixed diffusion-jump and GARCH models based on the data of Chinese stock market. The Schwarz criterion is also used. We find all... This paper compares the stock return distribution models of mixture normal distribution, mixed diffusion-jump and GARCH models based on the data of Chinese stock market. The Schwarz criterion is also used. We find all these models can capture the features of stock returns partly. EGARCH model is the best fitting to daily return and stable during different period. When the weekly and monthly returns are tested, the differences of the models' fitness become unobvious and unstable. 展开更多
关键词 stock return distribution mixture normal distribution mixed diffusion-jump model GARCH models
下载PDF
Linear Maximum Likelihood Regression Analysis for Untransformed Log-Normally Distributed Data
10
作者 Sara M. Gustavsson Sandra Johannesson +1 位作者 Gerd Sallsten Eva M. Andersson 《Open Journal of Statistics》 2012年第4期389-400,共12页
Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed dat... Medical research data are often skewed and heteroscedastic. It has therefore become practice to log-transform data in regression analysis, in order to stabilize the variance. Regression analysis on log-transformed data estimates the relative effect, whereas it is often the absolute effect of a predictor that is of interest. We propose a maximum likelihood (ML)-based approach to estimate a linear regression model on log-normal, heteroscedastic data. The new method was evaluated with a large simulation study. Log-normal observations were generated according to the simulation models and parameters were estimated using the new ML method, ordinary least-squares regression (LS) and weighed least-squares regression (WLS). All three methods produced unbiased estimates of parameters and expected response, and ML and WLS yielded smaller standard errors than LS. The approximate normality of the Wald statistic, used for tests of the ML estimates, in most situations produced correct type I error risk. Only ML and WLS produced correct confidence intervals for the estimated expected value. ML had the highest power for tests regarding β1. 展开更多
关键词 HETEROSCEDASTICITY MAXIMUM likelihood Estimation LINEAR Regression model Log-normal distribution Weighed LEAST-SQUARES Regression
下载PDF
偏正态条件下多元线性回归模型的统计推断及其应用
11
作者 赵伟凯 杨兰军 +1 位作者 戴琳 吴刘仓 《应用数学》 北大核心 2024年第2期519-529,共11页
本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐... 本文考虑带偏正态随机项多元线性回归模型的统计推断问题.基于最大似然方法,本文所做的工作如下:1)证明了参数最大似然估计在n≥p+1条件下以概率1存在唯一;2)在唯一性条件下给出参数估计的一致性结论;3)在一致性的条件下研究了参数的渐近性质,给出参数的渐近分布.最后通过数值模拟说明了所提理论和方法的有效性.实例表明模型参数估计的渐近分布具有实际意义. 展开更多
关键词 偏正态分布 多元线性模型 最大似然估计 渐近正态性
下载PDF
基于高斯混合模型及EM算法的建筑工程数据预警治理方法 被引量:1
12
作者 张静雯 耿天宝 《科学技术创新》 2024年第8期192-195,共4页
结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方... 结合初期雨水调蓄大直径顶管工程的实际设计及施工经验,对软弱地层条件下长距离大直径平行双管曲线顶管在设计及施工过程中存在的重点难点问题进行总结,并对顶管过程中的顶力及管周摩阻力做了深入分析研究,有针对性地提出了相应的解决方案,使该顶管工程顺利贯通。建筑工程行业在现代社会中发挥着重要的经济和社会作用,然而,它也伴随着诸多风险和不确定性。为了有效地管理和预测这些风险,本文提出了一种基于高斯混合模型(GMM)和期望最大化(EM)算法的数据预警治理方法。该方法旨在通过对建筑工程数据的建模和分析,提前识别潜在的问题和风险,从而改善工程项目的管理和决策。 展开更多
关键词 GMM高斯混合模型 EM算法 数据预警治理 正态分布曲线 后验概率
下载PDF
响应数据缺失下一般线性复合分位数光滑经验似然估计 被引量:2
13
作者 黄婉娟 罗双华 张成毅 《四川师范大学学报(自然科学版)》 CAS 2023年第5期628-637,共10页
由于分位数回归模型的损失函数不光滑,所得参数估计的效率不高,为提高参数估计的效率,首先提出复合分位数光滑经验对数似然比,包括完全数据复合分位数光滑经验对数似然比、加权复合分位数光滑经验对数似然比和插值复合分位数光滑经验对... 由于分位数回归模型的损失函数不光滑,所得参数估计的效率不高,为提高参数估计的效率,首先提出复合分位数光滑经验对数似然比,包括完全数据复合分位数光滑经验对数似然比、加权复合分位数光滑经验对数似然比和插值复合分位数光滑经验对数似然比,并在一定条件下证明了它们都是服从渐近卡方分布的.其次,根据该似然比构造了回归参数的置信区间,并证明了复合分位数光滑经验似然估计量是渐近正态的.最后,通过数值模拟实验说明了所得估计的有效性. 展开更多
关键词 缺失数据 复合分位数回归模型 光滑经验对数似然比 渐近正态性
下载PDF
二元威布尔分布形状参数相等的检验 被引量:7
14
作者 史道济 唐爱丽 汪玲 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2003年第1期83-86,共4页
将二元威布尔分布转化为二元极值分布,威布尔分布形状参数相等的检验转化为极值分布尺度参数相等的检验,给出了当相关参数θ=0.2,0.5,0.8,1时,检验统计量的模拟分位数和统计量的功效,然后就独立情况与基于简单线性无偏估计(GLUE)和最佳... 将二元威布尔分布转化为二元极值分布,威布尔分布形状参数相等的检验转化为极值分布尺度参数相等的检验,给出了当相关参数θ=0.2,0.5,0.8,1时,检验统计量的模拟分位数和统计量的功效,然后就独立情况与基于简单线性无偏估计(GLUE)和最佳线性无偏估计(BLUE)给出的统计量进行比较.最后给出一个实例. 展开更多
关键词 二元威布尔分布 形状参数 最佳线性无偏估计 简单线性无偏估计 似然比统计量 LOGISTIC模型 假设检验
下载PDF
天然红松阔叶林径级结构模拟 被引量:7
15
作者 张连金 惠刚盈 孙长忠 《西北林学院学报》 CSCD 北大核心 2014年第6期157-163,共7页
以天然红松阔叶林为研究对象,设置了4块1hm2样地,利用负指数模型、修正指数模型、限定混合Weibull分布模型及q值法进行径级结构模拟。结果表明,4块不同类型样地的径级分布均呈反"J"形,森林更新良好;指数模型整体上低估了林木株数,限... 以天然红松阔叶林为研究对象,设置了4块1hm2样地,利用负指数模型、修正指数模型、限定混合Weibull分布模型及q值法进行径级结构模拟。结果表明,4块不同类型样地的径级分布均呈反"J"形,森林更新良好;指数模型整体上低估了林木株数,限定混合Weibull分布模型则高估了林木株数,而修正指数模型整个径阶范围内与实际情况较为接近,模拟效果最好,表明修正指数模型更适合天然红松阔叶林径级结构的模拟;4块不同林分的q值为1.19-1.33,说明q值法对于天然红松阔叶林的直径分布的表达效果较好。 展开更多
关键词 天然红松阔叶林 径级结构 指数模型 混合模型 WEIBULL分布 q值法则
下载PDF
IRCT下对数正态和正态分布参数的MLE 被引量:13
16
作者 陈怡南 叶尔骅 《南京航空航天大学学报》 CAS CSCD 1996年第3期376-381,共6页
在文[1-4]的基础上进一步研究了带有不完全信息的随机截尾试验模型(IRCT)。着重讨论了对数正态分布参数的统计分析问题,建立了参数所满足的似然方程组,给出并证明了似然方程组解即参数的极大似然估计(MLE)的存在唯一... 在文[1-4]的基础上进一步研究了带有不完全信息的随机截尾试验模型(IRCT)。着重讨论了对数正态分布参数的统计分析问题,建立了参数所满足的似然方程组,给出并证明了似然方程组解即参数的极大似然估计(MLE)的存在唯一性定理,所得的结论对于正态分布也同样适用。文末给出了随机模拟数值解例子,结果表明,参数的MLE具有较高的精度。 展开更多
关键词 统计分布 正态分布 随机截尾 试验模型
下载PDF
非线性再生散度模型的渐近性质 被引量:4
17
作者 唐年胜 唐年胜 +1 位作者 朱仲义 韦博成 《数学物理学报(A辑)》 CSCD 北大核心 2000年第3期321-328,共8页
对非线性再生散度模型,给出了类似于Fahrmeir&Kaufmann(1985)和Wei(1998)的正则条件.基于这些正则条件,证明了最大似然估计的存在性、强相合性和渐近正态性,推广了已有文献的工作.
关键词 非线性再生散度模型 渐近性质 最大似然估计
下载PDF
基于复高斯混合模型的鲁棒VAD算法 被引量:2
18
作者 雷建军 杨震 +1 位作者 刘刚 郭军 《天津大学学报》 EI CAS CSCD 北大核心 2009年第4期353-356,共4页
针对语音激活检测的鲁棒性问题,提出在非平稳噪声环境下使用基于复高斯混合模型的鲁棒语音激活检测算法.算法中假设纯净语音谱满足复高斯混合模型,先验信噪比利用预先训练好的复高斯混合模型计算得到.复高斯混合模型的引入一方面提高了... 针对语音激活检测的鲁棒性问题,提出在非平稳噪声环境下使用基于复高斯混合模型的鲁棒语音激活检测算法.算法中假设纯净语音谱满足复高斯混合模型,先验信噪比利用预先训练好的复高斯混合模型计算得到.复高斯混合模型的引入一方面提高了语音激活检测的性能,另一方面避免了使用基于最小均方误差语音增强的先验信噪比估计过程.实验中使用NOISEX-92噪声库来验证系统在噪声环境下的性能.结果表明,该种算法在非平稳噪声环境下具有良好的检测性能. 展开更多
关键词 复高斯混合模型 语音激活检测 似然比测试
下载PDF
基于偏正态数据下联合位置与尺度混合专家回归模型的参数估计 被引量:9
19
作者 吴刘仓 杨松琴 戴琳 《高校应用数学学报(A辑)》 CSCD 北大核心 2018年第1期36-44,共9页
混合专家回归模型广泛应用于异质总体数据的分类,聚类及回归分析中.研究基于偏正态数据,提出了联合位置与尺度混合专家回归模型,该模型同时对位置,尺度和混合比例参数建模,应用MM算法和EM算法研究了该模型参数的极大似然估计.通过随机... 混合专家回归模型广泛应用于异质总体数据的分类,聚类及回归分析中.研究基于偏正态数据,提出了联合位置与尺度混合专家回归模型,该模型同时对位置,尺度和混合比例参数建模,应用MM算法和EM算法研究了该模型参数的极大似然估计.通过随机模拟和实例分析说明了该模型和方法的有效性与实用性. 展开更多
关键词 偏正态分布 联合位置与尺度模型 混合专家回归模型 EM算法
下载PDF
多元正态模型的线性不等式约束估计 被引量:2
20
作者 王继霞 李俊芬 刘次华 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第4期23-25,共3页
研究含有不完全数据的多元正态模型参数在一般线性不等式约束下的极大似然估计问题;利用约束EM算法求得多元正态模型参数的迭代解,并证明了此解是一般线性不等式约束下的最优解.
关键词 多元正态模型 极大似然估计 不完全数据 EM算法
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部