In order to study the control factors and mechanism of oolitic limestone reservoir being corroded by organic acid produced in burial stage,the reactions of acetic acid(pH=3) with oolitic limestone were investigated us...In order to study the control factors and mechanism of oolitic limestone reservoir being corroded by organic acid produced in burial stage,the reactions of acetic acid(pH=3) with oolitic limestone were investigated using the rotating-disk Corrosion Reactor System(CRS).The effects of disk rotational speed, temperature and system pressure were examined. Scanning Electron Microscope attached with Energy Dispersive X-Ray Analyzer(SEM-EDX) was展开更多
Three dimensional (3D) microscopic distributions of dolomite and calcite in a limestone sample have been analyzed with a data-constrained modeling (DCM) technique using synchrotron radiation-based multi-energy X-ray c...Three dimensional (3D) microscopic distributions of dolomite and calcite in a limestone sample have been analyzed with a data-constrained modeling (DCM) technique using synchrotron radiation-based multi-energy X-ray computed tomography (CT) data as constraints. In order to optimize the experimental parameters, X-ray CT simulations and DCM analysis of a numerical phantom consisting of calcite (CaCO3) and dolomite (CaMg(CO3)2) have been used to investigate the effects on the predicted results in relation to noise, X-ray energy and sample-to-detector distance (SDD). The simulation results indicate that the optimal X-ray energies are 25 and 35 keVs, and the SDD is 10 mm. The high resolution 3D distributions of mineral phases of a natural limestone have been obtained. The results are useful for quantitative understanding of mineral, porosity, and physical property distributions in relation to oil and gas reservoirs hosted in carbonate rocks, which account for more than half of the world’s conventional hydrocarbon resources. The case studied is also instructive for the applicability of the DCM methods for other types of composite materials with modest atomic number contrasts between the mineral phases.展开更多
Characteristics of sulfur dioxide emission from coal and petroleum coke combustion were examined in a lab scale circulating fluidized bed (CFB) combustor. The rate constant of the first order rate expression for the a...Characteristics of sulfur dioxide emission from coal and petroleum coke combustion were examined in a lab scale circulating fluidized bed (CFB) combustor. The rate constant of the first order rate expression for the absorption SO2 on the CaO surface was similar regardless of the origin of the limestone, the particle size and the initial SO2 concentration. However, the total SO2 absorption capacity was different depending on the origin of the limestone. The breakability of the particle which provides new surface for the reaction seems to play a major role in the absorption characteristics.展开更多
Data analysis was made for 54 stands of Chinese pine forests for soil and water conservation and timber. The regression equations were drawn up on forest density and different rafter timber and bush coverage.Based on ...Data analysis was made for 54 stands of Chinese pine forests for soil and water conservation and timber. The regression equations were drawn up on forest density and different rafter timber and bush coverage.Based on those equations, the number of rafter timber trees, storage, number of non-raffer timber trees, stand volume and the output value were calculated for six different forest densities ranged from 1250 to 6600 trees/hm2.According to the economic and ecological criteria, the optimum density for Chinese pine forests was determined as 1 650 trees/hm2.展开更多
This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water ...This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water over 40 years within a typical northern mountainous coal mine named Fengfeng Mine was studied by using Piper diagram, Gibbs scheme, ions correlation and Principal component analysis(PCA) methods. Results showed that, except for HCO3^-, the ions of Ca^2+, Mg^2+, SO4^2-,Na^++K^+, Cl^- and total dissolution solids(TDS) values all increased by years as mining continues. Different hydro-geochemical characteristics in different periods can reflect different water-rock interactions.Accordingly, sulfates dissolution gradually took place of carbonates in water-rock interaction. Especially,OL water-rock interactions in different periods were all affected by rock weathering and evaporationconcentration together. At last, evaporationconcentration co-effect dominated the hydrogeochemistry evolution slowly, along with significant cations exchange over years.展开更多
Laser rock spallation is a rock removal process that utilizes laser induced thermal stress to fracture and cause a break through the rock by creating small fragments before melting of the rock. In this paper we invest...Laser rock spallation is a rock removal process that utilizes laser induced thermal stress to fracture and cause a break through the rock by creating small fragments before melting of the rock. In this paper we investigated the effects of CO2 laser irradiation on limestone of Iran Sarvak formation. Since the limestone included heavy and light oil, we studied the amount of laser beam absorption by this oils for determining thermal fractured during the laser drilling laboratory process. In order to characterize this limestone spectrophotometry (from UV to NIR), scanning electron microscopy (SEM) have been used.展开更多
It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms.Based on in-depth analysis of ...It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms.Based on in-depth analysis of the limitation of classical nuclear magnetic resonance(NMR)permeability calculation models,and the understanding that the pore structure and porosity are the main controlling factors of permeability,this study provides a new permeability calculation method involving classifying pore sizes by using NMR T_2 spectrum first and then calculating permeability of different sizes of pores.Based on this idea,taking the bioclastic limestone reservoir in the A oilfield of Mid-East as an example,the classification criterion of four kinds of pore sizes:coarse,medium,fine and micro throat,was established and transformed into NMR T_2 standard based on shapes and turning points of mercury intrusion capillary pressure curves.Then the proportions of the four kinds of pore sizes were obtained precisely based on the NMR logging data.A new NMR permeability calculation model of multicomponent pores combinations was established based on the contributions of pores in different sizes.The new method has been used in different blocks.The results show that the new method is more accurate than the traditional ones.展开更多
Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure...Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.展开更多
Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwate...Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.展开更多
Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential comm...Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.展开更多
The systematic experiment regarding the general uniaxial compression test and the creep deformations of the typical limestones from the surrounding rock of the highway tunnels were made.The relationship between the ax...The systematic experiment regarding the general uniaxial compression test and the creep deformations of the typical limestones from the surrounding rock of the highway tunnels were made.The relationship between the axial stress and the delayed deformation steady value was obtained from the creep tests under low loading stresses.By the least square method,the parameters of Nishihara creep model were calculated from the creep curves.The results indicate that the strain change always lags behind the increase of stress,and the long-term strength of the limestone is about 80.6% of the stress at the volumetric strain reversal which is obtained from the conventional uniaxial compression test.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
Many karst geodes have been found in the pure Iimestone on the top Maokou formation (Permian) in the axial part of anticlines and lower part hydrological networks in Chongqing region. It is sometimes a reservoir natur...Many karst geodes have been found in the pure Iimestone on the top Maokou formation (Permian) in the axial part of anticlines and lower part hydrological networks in Chongqing region. It is sometimes a reservoir natural gas. Calcite megacryst decorates the wall of the geodes which believed to he formed in Tertiary.展开更多
The distribution of limestone in Java are dominantly located in the south coast and most of them had been suffered by karstie processes. The one that its environment has been studied is the Karangbolong karstic limest...The distribution of limestone in Java are dominantly located in the south coast and most of them had been suffered by karstie processes. The one that its environment has been studied is the Karangbolong karstic limestone in Kebumen, Central Java. The other karstic limestones were found in Merakurak (?), East Java, with different topography and morphology, All that展开更多
The management of overburden is an important task in open pit exploitations. Site topography and morphology as well as geological and geotechnical properties of natural and remoulded materials are the most important f...The management of overburden is an important task in open pit exploitations. Site topography and morphology as well as geological and geotechnical properties of natural and remoulded materials are the most important factors affecting the disposal phase. Economic and environmental requirements must be followed in order to achieve the best reclamation results, keeping into account site constraints such as slope stability, hauling and dumping issues, and interactions with groundwater. This paper deals with the above mentioned issues, illustrating a rational approach applied on the case of a large limestone quarry where the thickness of the overburden is relevant and the spoil material has to be dumped in a flooded pit. The proposed multidisciplinary approach led to the selection of most suitable methods for excavation, transportation and disposal. The selection was based on a detailed laboratory and site characterisation that defined favorable and adverse factors to be considered during the preliminary study of a large quarrying project.展开更多
This paper studies the microfacies, fossil contents, and the depositional environment of Wadi As Sir Limestone Formation exposed in the Al-tayyar area Zarqa Governorate, Northeastern Jordan. A total number of 35 sampl...This paper studies the microfacies, fossil contents, and the depositional environment of Wadi As Sir Limestone Formation exposed in the Al-tayyar area Zarqa Governorate, Northeastern Jordan. A total number of 35 samples were collected from a 30 m thick quarry section and used to prepare 35 thin sections. Some samples were washed over a 63 μm sieve, oven-dried at 50°C, sieved, and picked for benthic foraminifera analysis. Microscope analysis used to describe the microfacies and fossil contents. Four microfacies types and four lithological units are distinguished and described from the bottom to the top;the chalky unit (Unit-1) composed of bioclastic wackestone and biomicrite microfacies, and the dolomitic unit (Unit-2) immediately is existed above unit 1 composed dominantly of bioclastic mudstone and biomicrite microfacies. Marly limestone (Unit-3) is the following upwardly unit composed of bioclastic packestone and biosparite Microfacies, and the uppermost unit is limestone (Unit-4) consisted of bioclastic grainstone and biosparite microfacies. The fossil contents that were recognized in the studied thin sections and samples;bivalves, gastropods, pelecypods, cephalopods echinoderms, radiolarian, stromatoporoids, bone fragments, Saccaminopsis sp., Cibicidoides sp., Cibicides sp., Cyclammina sp., calcareous algae (Koninckopora and gymnocodiaceans), worm tubes, serpulids, and plentiful ostracods. The current study indicates that the Wadi As Sir Limestone Formation has deposited in a restricted circulation shallow shelf with low energy conditions most probably lagoonal environment.展开更多
Limestone powder is still applied as SO2 sorbent in emerging oxygen-fuel circulating fluidized bed boiler, but its carbonation in O2/CO2 flue gas is an unclear problem. For a better understanding of carbonation behavi...Limestone powder is still applied as SO2 sorbent in emerging oxygen-fuel circulating fluidized bed boiler, but its carbonation in O2/CO2 flue gas is an unclear problem. For a better understanding of carbonation behaviors, the tube furnace heating system was built for simulating circulating fluidized bed boiler flue gas by regulating the supply of O, CO2, N2, SO2 and H2O, and Carbonation reaction was tested. Thermal gravimetric analysis and scanning electron microscopy were used. It was found that carbonation is closely related to temperature, CO2 concentration, impurities, water vapor, and cycle times;high temperature can promote carbonation process;high concentration of CO2 can inhibit the chemical reaction stage speed of carbonation process, but it has little effect on the final conversion rate;water vapor can increase the final conversion rate of carbonation;the cycle times will reduce the activity of carbonation. The presence of carbonation turns the traditional boiler flue gas indirect desulfurization model into indirect desulfurization mechanism which does not have a negative impact on SO2 removal efficiency.展开更多
Massive amounts of limestone waste are produced by the stone processing industry worldwide. Generally, it is believed that 60% to 70% of the stone is wasted in processing in the form of fragments, powder and slurry ou...Massive amounts of limestone waste are produced by the stone processing industry worldwide. Generally, it is believed that 60% to 70% of the stone is wasted in processing in the form of fragments, powder and slurry out of which around 30% is in the form of fine powder [1]. This waste has no beneficial usage and poses environmental hazards. Use of this waste product in the construction industry can largely reduce the amount of waste to be disposed off by the local municipalities in addition to reducing large burden on the environment. Some basic research on use of limestone dust as cement/ concrete filler?has?been carried out in the recent past but high strength/ high performance concretes have not been investigated yet [2] [3]. The concrete industry is among the largest consumer of raw materials worldwide and has been investigated for use of various types of waste materials like crushed brick, rice husk and straw ash as either aggregates for concrete or as partial cement substitutes. Use of limestone dust as filler material in concrete can consume a huge amount of this waste material which has to be disposed off otherwise, creating large burden on the environment. This experimental study aimed at evaluating the properties of high performance concretes made from Portland cement, natural aggregates and sand. Limestone dust was added by replacing sand in the percentages of 10% and 20%. Wide ranging investigations covering most aspects of mechanical behavior and permeability were carried out for various mixes for compressive strengths of 60?N/mm2, 80?N/mm2 and 100?N/mm2. Compressive strengths of concrete specimen with partial replacement of sand with 10% and 20% limestone dust as filler material for 60?N/mm2, 80N/mm2 and 100?N/mm2 were observed to be higher by about 4% to 12% than the control specimen. Flexural strengths were also observed to be higher by 12%?-?13%. Higher elastic moduli and reduced permeability were observed along with better sulphate and acid resistance. Better strengths and improved durability of such high-performance concretes make it a more acceptable material for major construction projects.展开更多
This study presents an analysis of magnetic susceptibility and natural gamma radioactivity as indirect indicators of impurities in Cretaceous limestones of the Sabinas basin, as well as of the possible relation of the...This study presents an analysis of magnetic susceptibility and natural gamma radioactivity as indirect indicators of impurities in Cretaceous limestones of the Sabinas basin, as well as of the possible relation of these physical properties with the changes in the sedimentation environment. Both of these physical properties indicate changes in the degree of impurities and the mineralogical composition of this rock, principally in its organic matter and detritus content. Considering that the sedimentation environment determines the impurities in these rocks, possible environmental conditions at different levels of the Cretaceous were suggested using the magnetic susceptibility, total gamma radiation and potassium values, as well as the uranium and thorium concentration in the limestones. The analyses suggest variations in the depth of water table of the basin, which are mainly related to transgressions and marine regressions.展开更多
A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated ...A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated and compared with pure Q-phase cement.The results indicate that the ternary system exhibits exceptional and sustained compressive strength even under a 40℃environment,significantly outperforming pure Q-phase.The mechanism lies in that metakaolin effectively inhibits the transformation of metastable phase.Meanwhile,the interactions among Q-phase,limestone,and metakaolin further enhance the cementitious performance.The ternary system effectively addresses potential issues of strength loss in Q-phase cement application,and as a low-carbon cementitious material system,it holds promising potential applications.展开更多
文摘In order to study the control factors and mechanism of oolitic limestone reservoir being corroded by organic acid produced in burial stage,the reactions of acetic acid(pH=3) with oolitic limestone were investigated using the rotating-disk Corrosion Reactor System(CRS).The effects of disk rotational speed, temperature and system pressure were examined. Scanning Electron Microscope attached with Energy Dispersive X-Ray Analyzer(SEM-EDX) was
文摘Three dimensional (3D) microscopic distributions of dolomite and calcite in a limestone sample have been analyzed with a data-constrained modeling (DCM) technique using synchrotron radiation-based multi-energy X-ray computed tomography (CT) data as constraints. In order to optimize the experimental parameters, X-ray CT simulations and DCM analysis of a numerical phantom consisting of calcite (CaCO3) and dolomite (CaMg(CO3)2) have been used to investigate the effects on the predicted results in relation to noise, X-ray energy and sample-to-detector distance (SDD). The simulation results indicate that the optimal X-ray energies are 25 and 35 keVs, and the SDD is 10 mm. The high resolution 3D distributions of mineral phases of a natural limestone have been obtained. The results are useful for quantitative understanding of mineral, porosity, and physical property distributions in relation to oil and gas reservoirs hosted in carbonate rocks, which account for more than half of the world’s conventional hydrocarbon resources. The case studied is also instructive for the applicability of the DCM methods for other types of composite materials with modest atomic number contrasts between the mineral phases.
文摘Characteristics of sulfur dioxide emission from coal and petroleum coke combustion were examined in a lab scale circulating fluidized bed (CFB) combustor. The rate constant of the first order rate expression for the absorption SO2 on the CaO surface was similar regardless of the origin of the limestone, the particle size and the initial SO2 concentration. However, the total SO2 absorption capacity was different depending on the origin of the limestone. The breakability of the particle which provides new surface for the reaction seems to play a major role in the absorption characteristics.
文摘Data analysis was made for 54 stands of Chinese pine forests for soil and water conservation and timber. The regression equations were drawn up on forest density and different rafter timber and bush coverage.Based on those equations, the number of rafter timber trees, storage, number of non-raffer timber trees, stand volume and the output value were calculated for six different forest densities ranged from 1250 to 6600 trees/hm2.According to the economic and ecological criteria, the optimum density for Chinese pine forests was determined as 1 650 trees/hm2.
基金Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.SHJT-17-42.17)Fundamental Research Funds for the Central Universities of China(Grant Nos.3142018009,3142017100)Key Laboratory of Mine Geological Hazards Mechanism and Control Project(KF2017-13).Figure 7 PCA plot of hydro-chemistry of Ordovician limestone karst(OL)water samples from different years.
文摘This research aimed to investigate the changing mechanism of hydro-geochemistry in Ordovician limestone karst(OL) water induced by mountainous coal mining activities. Thus, the hydrogeochemistry evolution of OL water over 40 years within a typical northern mountainous coal mine named Fengfeng Mine was studied by using Piper diagram, Gibbs scheme, ions correlation and Principal component analysis(PCA) methods. Results showed that, except for HCO3^-, the ions of Ca^2+, Mg^2+, SO4^2-,Na^++K^+, Cl^- and total dissolution solids(TDS) values all increased by years as mining continues. Different hydro-geochemical characteristics in different periods can reflect different water-rock interactions.Accordingly, sulfates dissolution gradually took place of carbonates in water-rock interaction. Especially,OL water-rock interactions in different periods were all affected by rock weathering and evaporationconcentration together. At last, evaporationconcentration co-effect dominated the hydrogeochemistry evolution slowly, along with significant cations exchange over years.
文摘Laser rock spallation is a rock removal process that utilizes laser induced thermal stress to fracture and cause a break through the rock by creating small fragments before melting of the rock. In this paper we investigated the effects of CO2 laser irradiation on limestone of Iran Sarvak formation. Since the limestone included heavy and light oil, we studied the amount of laser beam absorption by this oils for determining thermal fractured during the laser drilling laboratory process. In order to characterize this limestone spectrophotometry (from UV to NIR), scanning electron microscopy (SEM) have been used.
文摘It is difficult to accurately obtain the permeability of complex lithologic reservoirs using conventional methods because they have diverse pore structures and complex seepage mechanisms.Based on in-depth analysis of the limitation of classical nuclear magnetic resonance(NMR)permeability calculation models,and the understanding that the pore structure and porosity are the main controlling factors of permeability,this study provides a new permeability calculation method involving classifying pore sizes by using NMR T_2 spectrum first and then calculating permeability of different sizes of pores.Based on this idea,taking the bioclastic limestone reservoir in the A oilfield of Mid-East as an example,the classification criterion of four kinds of pore sizes:coarse,medium,fine and micro throat,was established and transformed into NMR T_2 standard based on shapes and turning points of mercury intrusion capillary pressure curves.Then the proportions of the four kinds of pore sizes were obtained precisely based on the NMR logging data.A new NMR permeability calculation model of multicomponent pores combinations was established based on the contributions of pores in different sizes.The new method has been used in different blocks.The results show that the new method is more accurate than the traditional ones.
基金supported by the National Natural Science Foundation for Excellent Young Scholars of China(No.52222110)the Natural Science Foundation of Jiangsu Province(No.BK20211230).
文摘Coral reef limestone at different depositional depths and facies differ remarkably on the textural and mineralogical characteristics,owing to the complex sedimentary diagenesis.To explore the effects of pore structure and mineral composition associated with diagenetic variation on the mechanical behavior of reef limestone,a series of quasi-static and dynamic compression tests along with microscopic examinations were performed on the reef limestone at shallow and deep burial depths.It is revealed that the shallow reef limestone(SRL)is classified as a porous aragonite-type carbonate rock with high porosity(55.3±3.2)%and pore connectivity.In comparison,the deep reef limestone(DRL)is mainly composed of dense calcite-type calcium carbonate with low porosity(4.9±1.6)%and pore connectivity.The DRL strengthened and stiffened by the tight grain framework consistently displays much higher values of the dynamic compressive strength,elastic modulus,brittleness index,and specific energy absorption than those of the SRL.The gap between two types of limestone further increases with an increase in strain rate.It appears that the failure pattern of SRL is dominated by the inherent defects like weak bonding interfaces and growth lines,revealed by the intricate fracturing network and mixed failure.Likewise,although the preexisting megapores in DRL may affect the crack propagation on pore tips to a certain distance,it hardly alters the axial splitting failure of DRL under impacts.The stress wave propagation and attenuation in SRL is primarily controlled by the reflection and diffusion caused by plenty mesopores,as well as an energy dissipation in layer-wise pore collapse and adjacent grain crushing,while the stress wave in DRL is highly hinged on the insulation and diffraction induced by the isolated megapores.This process is accompanied by the energy dissipation behavior of inelastic deformation resulted from the pore-emanated microcracking.
基金funded by the National Key R&D Program of China(2023YFC3806800).
文摘Osmotic water alters the physicochemical properties and internal structures of limestone.This issue is particularly critical in tunnel construction across mountainous regions with aquifers,where pressurized groundwater can destabilize the limestone-based surrounding rock.Thus,systematic research into the physicochemical properties and pore structure changes in the limestone under pressurized water is essential.Additionally,it is essential to develop an interpretable mathematical model to accurately depict how pressurized osmotic water weakens limestone.In this research,a specialized device was designed to simulate the process of osmotic laminar flow within limestone.Then,four main tests were conducted:mass loss,acoustic emission(AE),mercury intrusion porosimetry(MIP),and fluorescence analysis.Experimental results gained from tests led to the development of a“Particle-pore throat-water film”model.Proposed model explains water-induced physicochemical and pore changes in limestone under osmotic pressure and reveals evolutionary mechanisms as pressure increases.Based on experimental results and model,we found that osmotic pressure not only alters limestone composition but also affects pore throats larger than 0.1μm.Furthermore,osmotic pressure expands pore throats,enhancing pore structure uniformity,interconnectivity,and permeability.These effects are observed at a threshold of 7.5 MPa,where cohesive forces within the mineral lattice are surpassed,leading to the breakdown of erosion-resistant layer and a significant increase in hydrochemical erosion.
基金supported by the National Natural Science Foundation of China(NSFC:32260268)the Science and Technology Project of Guizhou Province[(2021)General-455]the Guizhou Hundred-level Innovative Talents Project[Qian-ke-he platform talents(2020)6004-2].
文摘Leaf trait networks(LTNs)visualize the intricate linkages reflecting plant trait-functional coordination.Typical karst vegetation,developed from lithological dolomite and limestone,generally exhibits differential communities,possibly due to habitat rock exposure,soil depth,and soil physicochemical properties variations,leading to a shift from plant trait variation to functional linkages.However,how soil and habitat quality affect the differentiation of leaf trait networks remains unclear.LTNs were constructed for typical dolomite and limestone habitats by analyzing twenty-one woody plant leaf traits across fifty-six forest subplots in karst mountains.The differences between dolomite and limestone LTNs were compared using network parameters.The network association of soil and habitat quality was analyzed using redundancy analysis(RDA),Mantle's test,and a random forest model.The limestone LTN exhibited significantly higher edge density with lower diameter and average path length when compared to the dolomite LTN.It indicates LTN differentiation,with the limestone network displaying a more compact architecture and higher connectivity than the dolomite network.The specific leaf phosphorus and leaf nitrogen contents of dolomite LTN,as well as the leaf mass and leaf carbon contents of limestone LTN,significantly contributed to network degree and closeness,serving as crucial node traits regulating LTN connectedness.Additionally,both habitat LTNs significantly correlated with soil nitrogen and phosphorus,stoichiometric ratios,pH,and organic carbon,as well as soil depth and rock exposure rates,with soil depth and rock exposure showing greater relative importance.Soil depth and rock exposure dominate trait network differentiation,with the limestone habitat exhibiting a more compact network architecture than the dolomite habitat.
基金Project(50774090) supported by the National Natural Science Foundation of China
文摘The systematic experiment regarding the general uniaxial compression test and the creep deformations of the typical limestones from the surrounding rock of the highway tunnels were made.The relationship between the axial stress and the delayed deformation steady value was obtained from the creep tests under low loading stresses.By the least square method,the parameters of Nishihara creep model were calculated from the creep curves.The results indicate that the strain change always lags behind the increase of stress,and the long-term strength of the limestone is about 80.6% of the stress at the volumetric strain reversal which is obtained from the conventional uniaxial compression test.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
文摘Many karst geodes have been found in the pure Iimestone on the top Maokou formation (Permian) in the axial part of anticlines and lower part hydrological networks in Chongqing region. It is sometimes a reservoir natural gas. Calcite megacryst decorates the wall of the geodes which believed to he formed in Tertiary.
文摘The distribution of limestone in Java are dominantly located in the south coast and most of them had been suffered by karstie processes. The one that its environment has been studied is the Karangbolong karstic limestone in Kebumen, Central Java. The other karstic limestones were found in Merakurak (?), East Java, with different topography and morphology, All that
文摘The management of overburden is an important task in open pit exploitations. Site topography and morphology as well as geological and geotechnical properties of natural and remoulded materials are the most important factors affecting the disposal phase. Economic and environmental requirements must be followed in order to achieve the best reclamation results, keeping into account site constraints such as slope stability, hauling and dumping issues, and interactions with groundwater. This paper deals with the above mentioned issues, illustrating a rational approach applied on the case of a large limestone quarry where the thickness of the overburden is relevant and the spoil material has to be dumped in a flooded pit. The proposed multidisciplinary approach led to the selection of most suitable methods for excavation, transportation and disposal. The selection was based on a detailed laboratory and site characterisation that defined favorable and adverse factors to be considered during the preliminary study of a large quarrying project.
文摘This paper studies the microfacies, fossil contents, and the depositional environment of Wadi As Sir Limestone Formation exposed in the Al-tayyar area Zarqa Governorate, Northeastern Jordan. A total number of 35 samples were collected from a 30 m thick quarry section and used to prepare 35 thin sections. Some samples were washed over a 63 μm sieve, oven-dried at 50°C, sieved, and picked for benthic foraminifera analysis. Microscope analysis used to describe the microfacies and fossil contents. Four microfacies types and four lithological units are distinguished and described from the bottom to the top;the chalky unit (Unit-1) composed of bioclastic wackestone and biomicrite microfacies, and the dolomitic unit (Unit-2) immediately is existed above unit 1 composed dominantly of bioclastic mudstone and biomicrite microfacies. Marly limestone (Unit-3) is the following upwardly unit composed of bioclastic packestone and biosparite Microfacies, and the uppermost unit is limestone (Unit-4) consisted of bioclastic grainstone and biosparite microfacies. The fossil contents that were recognized in the studied thin sections and samples;bivalves, gastropods, pelecypods, cephalopods echinoderms, radiolarian, stromatoporoids, bone fragments, Saccaminopsis sp., Cibicidoides sp., Cibicides sp., Cyclammina sp., calcareous algae (Koninckopora and gymnocodiaceans), worm tubes, serpulids, and plentiful ostracods. The current study indicates that the Wadi As Sir Limestone Formation has deposited in a restricted circulation shallow shelf with low energy conditions most probably lagoonal environment.
文摘Limestone powder is still applied as SO2 sorbent in emerging oxygen-fuel circulating fluidized bed boiler, but its carbonation in O2/CO2 flue gas is an unclear problem. For a better understanding of carbonation behaviors, the tube furnace heating system was built for simulating circulating fluidized bed boiler flue gas by regulating the supply of O, CO2, N2, SO2 and H2O, and Carbonation reaction was tested. Thermal gravimetric analysis and scanning electron microscopy were used. It was found that carbonation is closely related to temperature, CO2 concentration, impurities, water vapor, and cycle times;high temperature can promote carbonation process;high concentration of CO2 can inhibit the chemical reaction stage speed of carbonation process, but it has little effect on the final conversion rate;water vapor can increase the final conversion rate of carbonation;the cycle times will reduce the activity of carbonation. The presence of carbonation turns the traditional boiler flue gas indirect desulfurization model into indirect desulfurization mechanism which does not have a negative impact on SO2 removal efficiency.
文摘Massive amounts of limestone waste are produced by the stone processing industry worldwide. Generally, it is believed that 60% to 70% of the stone is wasted in processing in the form of fragments, powder and slurry out of which around 30% is in the form of fine powder [1]. This waste has no beneficial usage and poses environmental hazards. Use of this waste product in the construction industry can largely reduce the amount of waste to be disposed off by the local municipalities in addition to reducing large burden on the environment. Some basic research on use of limestone dust as cement/ concrete filler?has?been carried out in the recent past but high strength/ high performance concretes have not been investigated yet [2] [3]. The concrete industry is among the largest consumer of raw materials worldwide and has been investigated for use of various types of waste materials like crushed brick, rice husk and straw ash as either aggregates for concrete or as partial cement substitutes. Use of limestone dust as filler material in concrete can consume a huge amount of this waste material which has to be disposed off otherwise, creating large burden on the environment. This experimental study aimed at evaluating the properties of high performance concretes made from Portland cement, natural aggregates and sand. Limestone dust was added by replacing sand in the percentages of 10% and 20%. Wide ranging investigations covering most aspects of mechanical behavior and permeability were carried out for various mixes for compressive strengths of 60?N/mm2, 80?N/mm2 and 100?N/mm2. Compressive strengths of concrete specimen with partial replacement of sand with 10% and 20% limestone dust as filler material for 60?N/mm2, 80N/mm2 and 100?N/mm2 were observed to be higher by about 4% to 12% than the control specimen. Flexural strengths were also observed to be higher by 12%?-?13%. Higher elastic moduli and reduced permeability were observed along with better sulphate and acid resistance. Better strengths and improved durability of such high-performance concretes make it a more acceptable material for major construction projects.
文摘This study presents an analysis of magnetic susceptibility and natural gamma radioactivity as indirect indicators of impurities in Cretaceous limestones of the Sabinas basin, as well as of the possible relation of these physical properties with the changes in the sedimentation environment. Both of these physical properties indicate changes in the degree of impurities and the mineralogical composition of this rock, principally in its organic matter and detritus content. Considering that the sedimentation environment determines the impurities in these rocks, possible environmental conditions at different levels of the Cretaceous were suggested using the magnetic susceptibility, total gamma radiation and potassium values, as well as the uranium and thorium concentration in the limestones. The analyses suggest variations in the depth of water table of the basin, which are mainly related to transgressions and marine regressions.
基金Funded by the National Natural Science Foundation of China(No.52172026)the Science and Technology Development Project of China Railway Design Corporation(Nos.2023A0226407 and 2023B03040003)。
文摘A ternary system comprising Ca_(20)Al_(26)Mg_(3)Si_(3)O_(68)(Q-phase),limestone,and metakaolin is proposed,and its hydration behavior,hydration product phases,microstructure,and mechanical properties are investigated and compared with pure Q-phase cement.The results indicate that the ternary system exhibits exceptional and sustained compressive strength even under a 40℃environment,significantly outperforming pure Q-phase.The mechanism lies in that metakaolin effectively inhibits the transformation of metastable phase.Meanwhile,the interactions among Q-phase,limestone,and metakaolin further enhance the cementitious performance.The ternary system effectively addresses potential issues of strength loss in Q-phase cement application,and as a low-carbon cementitious material system,it holds promising potential applications.