期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Production of an Eco-Cement by Clinker Substitution by the Mixture of Calcined Clay and Limestone, Songololo (DR Congo)
1
作者 Guyghens Bongwele Onanga Eric Kisonga Manuku +4 位作者 Riadh Ben Khalifa Daddy Patrick Ilito Lofongo Alain Preat Valentin Kanda Nkula Dominique Wetshondo Osomba 《Journal of Geoscience and Environment Protection》 2023年第7期67-80,共14页
Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of indus... Ordinary Portland Cement (OPC) is by mass the largest manufactured product on Earth, responsible for approximately 6% - 8% of global anthropogenic carbon dioxide emissions (CO<sub>2</sub>) and 35% of industrial CO<sub>2</sub> emissions. On average 0.8 to 0.9 ton of CO<sub>2</sub> is emitted to produce one ton of OPC. In this paper, partial substitution of clinker (30% - 35%) by the calcined clay-limestone mixture was investigated in order to produce an eco-cement (LC3). Analyzes by XRF, XRD and ATG/ATD have characterized different components, determined the calcination temperature and selected the right clay which can act as effective Supplementary Cementitious Material (SCM). Mechanical tests on mortar carried out over a period of 90 days. The WBCSD/WRI “Greenhouse Gas Protocol” methodology then allowed the calculation of CO<sub>2</sub> emissions into the atmosphere. Three types of clay are available in the Songololo Region. The kaolinite is the principal clay mineral and its content varies from 27% to 34%. The sum of kaolinite and amorphous phase which enable clay to react with cementitious material ranges from 57% to 60%. The SiO<sub>2</sub> content ranges from 33% to 76%, the Alumina content from 12% to 20% so that the ratio Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub> is on the higher side (0.17 - 0.53). The calcination window is between 750°C and 850°C and the best clay which can act as SCM identified. The clinker’s substitution reduced CO<sub>2</sub> emissions from 0.824 ton of CO<sub>2</sub> for one ton of OPC to 0.640 ton of CO<sub>2</sub> for one ton of LC3, means 22% less emissions. The compressive strengths developed by LC3 vary from 8.91 to 57.6 MPa (Day 1 to Day 90), exceed those of references 32.5 cement and are close to 42.5 cement. In view of the results, LC3 cement can be considered for industrial trials. 展开更多
关键词 clay calcined clay limestone cement ECO-cement Songololo
下载PDF
Hydration Properties of Calcined Clay Pozzolan and Limestone Mineral Admixtures in Binary and Ternary Cements
2
作者 Eugene Atiemo Charles Kwame Kankam +1 位作者 Francis Momade Kwabena Appiah Boakye 《Journal of Physical Science and Application》 2014年第5期323-327,共5页
This paper investigates the properties of hydrated binary and ternary blended cements using limestone and calcined clay pozzolan as supplementary cementitious materials. The blended cements were hydrated and their pha... This paper investigates the properties of hydrated binary and ternary blended cements using limestone and calcined clay pozzolan as supplementary cementitious materials. The blended cements were hydrated and their phase compositions were evaluated by thermogravimetric and powder X-ray diffraction at 28 days. The morphology of the samples was also determined. The water demand, setting time, compressive and flexural strengths of mortar and concrete samples were determined up to 365 days. The study concluded that the portlandite [Ca(OH)2] content was considerably reduced whilst ettfingite formation were enhanced as a result of admixture reactions. The water demand and setting times of blended cements were lower than OPC with 5% admixture content but higher with increasing content. The mechanical test results also showed that Class 42.5N and 32.5R cements can be produced from the binary and ternary blends containing up to 10% and 20% admixtures, respectively. 展开更多
关键词 limestone calcined clay pozzolan supplementary cementitious materials ADMIXTURES portlandite ETTRINGITE strength.
下载PDF
Strength of Limestone-based Non-calcined Cement and its Properties 被引量:1
3
作者 林宗寿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第3期471-475,共5页
A new type of cement was prepared with ground limestone powder, blastfumace slag, steel slag and gypsum without calcination. The fraction of ground limestone powder in the cement was as high as 40 wt%-60 wt% without P... A new type of cement was prepared with ground limestone powder, blastfumace slag, steel slag and gypsum without calcination. The fraction of ground limestone powder in the cement was as high as 40 wt%-60 wt% without Portland clinker. All of its physical properties can meet the requirements of masonry cement standards. The impact of limestone content on physical properties of the cement and determined its impact on law was investigated. The steel slag can excit the aquation activity of this cement effectively, and the influence of its quantity on the strength of the materials was studied, which shows that the optimum quantity of mixing is 10%. By way of changing the different content of the lime stone by quartzy sample, the law of the compression strength and the PH value was determined, confirming that the lime stone can promote the early aquation of the slag and improve the early strength. The main hydration product of this cement is calcium aluminate hydrate, ettringite and calcium silicate hydrate, as indicated by XRD and SEM analysis. 展开更多
关键词 ground limestone powder non-calcined clinker-free cement steel slag
下载PDF
Hydration Characteristics and Mechanical Properties of Cement-Based Materials Modified by Calcined Zeolite and Montmorillonite
4
作者 Lingling Qin Mengya Zhou +5 位作者 Jiahao Yan Ping Duan Yingcan Zhu Wei Chen Zuhua Zhang Aiguo Wang 《Journal of Renewable Materials》 SCIE EI 2023年第5期2191-2207,共17页
Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of... Montmorillonite and clinoptilolite zeolite were used as representative materials to prepare calcined clay-cement binary cementitious materials in order to study the effect of calcination treatment on the activation of clay minerals and the activity difference between layered and framed clays in this research.The influence of different calcined clay content(2%,4%,6%,8%,10%)on the fluidity,compressive strength,microstructure,phase change,and hydration heat of cement-based materials were analyzed.The calcined clay improves the fluidity of cement-based materials as compared with the uncalcined group.The addition of calcined montmorillonite(CMT)improves the development of mechanical strength,and the optimal compressive strength reaches 85 MPa at 28 days with 8%CMT.However,the activity of calcined clinoptilolite zeolite(CZL)is weak with few reaction sites,which slightly reduced the mechanical strength as compared to the blank sample.The addition of CMT changes the microscopic morphology of hydration products such as C-S-H and C-A-H,leading to the formation and transformation of ettringite in the early stage.It promotes the gradual polymerization of Si-O bonds into Si-O-Si bonds simultaneously,which accelerates the early hydration process.However,CZL acts mainly as a filling function in the cementitious system.In brief,CMT as an admixture can improve the mechanical properties of cement,but CZL has little effect.This work provides a guideline for the applications of calcined clay in cement,considering the influence of clay type on workability and mechanical strength. 展开更多
关键词 calcined clay cement MONTMORILLONITE clinoptilolite zeolite mechanical strength HYDRATION
下载PDF
Geo-environmental properties and microstructural characteristics of sustainable limestone calcined clay cement(LC3)binder treated Zn-contaminated soils 被引量:1
5
作者 Haoliang WU Heng SONG +3 位作者 Xinpo SUN Yuzhang BI Shenjing FU Ning YANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第10期898-911,共14页
Limestone calcined clay cement(LC3)is an environment-friendly and sustainable cementitious material.It has recently gained considerable attention for the stabilization/solidification(S/S)of soils contaminated by heavy... Limestone calcined clay cement(LC3)is an environment-friendly and sustainable cementitious material.It has recently gained considerable attention for the stabilization/solidification(S/S)of soils contaminated by heavy metals.However,the existing studies on S/S of Zn-contaminated soils using LC3 in terms of hydraulic conductivity and microstructural properties as compared to ordinary Portland cement(OPC)are limited.This study focuses on the evaluation of the mechanical,leaching,and microstructural characteristics of Zn-contaminated soils treated with different contents(0%,4%,6%,8%,and 10%)of low-carbon LC3.The engineering performance of the treated Zn-contaminated soils is assessed over time using unconfined compressive strength(UCS),hydraulic conductivity(k),toxicity characteristic leaching procedure(TCLP),and synthetic precipitation leaching procedure(SPLP)tests.Experimental results show that the UCS of Zn-contaminated soils treated with LC3 ranged from 1.47 to 2.49 MPa,which is higher than 1.63%–13.07%for those treated with OPC.The k of Zn-contaminated soils treated with LC3 ranged from 1.16×10^(−8)to 5.18×10^(−8)cm/s as compared to the OPC treated samples.For the leaching properties,the leached Zn from TCLP and SPLP is 1.58–321.10 mg/L and 0.52–284.65 mg/L as the LC3 contents ranged from 4%to 10%.Further,the corresponding pH modeling results indicate that LC3 promotes a relatively suitable dynamic equilibrium condition to immobilize the higher-level Zn contamination.In addition,microscopic analyses demonstrate that the formations of hydration products,i.e.,Zn(OH)_(2),Zn_(2)SiO_(4),calcium silicate hydrate(C–S–H),calcium silicate aluminate hydrate(C–A–S–H)gel,ettringite,and CaZn(SiO_(4))(H_(2)O),are the primary mechanisms for the immobilization of Zn.This study also provides an empirical formula between the UCS and k to support the application of LC3-solidified Zn-contaminated soils in practical engineering in the field. 展开更多
关键词 limestone calcined clay cement(LC3) Stabilization/solidification(S/S) Zn-contaminated soils Microstructural characteristics
原文传递
Degradation of limestone calcined clay cement(LC^(3))mortars under sulfate attack
6
作者 Cheng Yu Zhen Li Jiaping Liu 《Low-carbon Materials and Green Construction》 2023年第1期34-47,共14页
Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanica... Limestone Calcined Clay Cement(LC^(3)) is a newly proposed low-carbon cement,which can effectively reduce energy consumption and carbon emissions of the traditional cement industry without changing the basic mechanical properties of cement-based materials.In this study,the degradation process of mortar samples of limestone and calcined clay cementitious material under sulfate attack is studied by both macroscopic and microscopic analysis.The results show that compared with pure Portland cement,the addition of calcined clay and limestone can significantly reduce the expansion rate,loss of dynamic modulus and mass loss of mortar specimens under sulfate attack.The addition of calcined clay and limestone will refine the pore size distribution of mortar specimens,then inhibiting the diffusion of sulfate and formation of corrosive products,therefore leading to a significant improvement of the sulfate resistance. 展开更多
关键词 limestone calcined clay cement(LC^(3)) Sulfate attack Expansion Sulfate penetration profiles Corrosion product
原文传递
Development of limestone calcined clay cement concrete in South China and its bond behavior with steel reinforcement 被引量:1
7
作者 Zhen-yu HUANG You-shuo HUANG +6 位作者 Wen-yu LIAO Ning-xu HAN Ying-wu ZHOU Feng XING Tong-bo SUI Bin WANG Hong-yan MA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第11期892-907,共16页
Limestone calcined clay cement(LC^3),consisting of ordinary Portland cement(OPC)clinker,calcined clay,limestone powder,and gypsum,has been considered a promising solution to current challenges in the cement and concre... Limestone calcined clay cement(LC^3),consisting of ordinary Portland cement(OPC)clinker,calcined clay,limestone powder,and gypsum,has been considered a promising solution to current challenges in the cement and concrete industry,such as high carbon emissions,high energy consumption,and resource shortages.This study carries out a series of experimental investigations of LC^3-based paste,mortar,and concrete,including microstructural analyses(e.g.hydration product characterization and pore structure analysis)and macro-scale testing(e.g.workability and mechanical properties),using raw materials from south China.The results show that,in LC^3 paste,the replacement of clinker by calcined clay and limestone leads to an increased volume of small pores but decreased total volume of pores.The workability of LC^3 mortar and concrete can be readily tailored using conventional superplasticizers.When designed for comparable 28-d compressive strength,the LC^3 mortar and concrete tend to have lower early-age compressive strength,but comparable compressive strength and higher flexural strength than those of the OPC counterparts at late ages.This study also examines the bond-slip behavior between LC^3 concrete and steel bars and finds that the bond strength is comparable to that of OPC concrete with the same 28-d compressive strength,but that the LC^3 concrete-rebar interface exhibits higher bond-slip stiffness.These findings on LC^3 concrete provide fundamental information and guidance for furthering the application of LC^3 binder in structural concrete in the near future. 展开更多
关键词 limestone calcined clay cement(LC^3) Hydration BOND-SLIP Mercury intrusion porosimetry(MIP) Scanning electron microscope(SEM) Bond strength
原文传递
石灰石-煅烧黏土-水泥(LC^(3))体系的水化动力学模型
8
作者 吴浪 鲍蓉 +1 位作者 戴健 雷斌 《材料导报》 EI CAS CSCD 北大核心 2024年第15期173-178,共6页
石灰石-煅烧黏土-水泥(LC^(3))是一种新型复合建筑材料,在满足水泥可持续生产和节能减排方面具有优良的应用前景。本工作通过考虑煅烧黏土和石灰石矿物掺合料的稀释效应、成核作用和火山灰反应等影响作用,提出了一种评估LC^(3)混凝土化... 石灰石-煅烧黏土-水泥(LC^(3))是一种新型复合建筑材料,在满足水泥可持续生产和节能减排方面具有优良的应用前景。本工作通过考虑煅烧黏土和石灰石矿物掺合料的稀释效应、成核作用和火山灰反应等影响作用,提出了一种评估LC^(3)混凝土化学和力学性能的水化动力学模型。根据动力学模型,分析计算了不同掺量情况下LC^(3)胶凝体系的累计水化热、氢氧化钙含量和结合水总量。通过将模型分析结果与试验结果相比较,证明了所建立的模型可较好地模拟LC^(3)水泥胶凝体系的水化进程。结果表明,在一定掺量范围内,LC^(3)水泥胶凝体系的水化程度与掺量成正比,而氢氧化钙含量、结合水总量和累计水化热与之成反比,LC^(3)材料用于水泥辅助胶凝材料时的推荐掺量为25%~35%。 展开更多
关键词 石灰石-煅烧黏土-水泥(LC^(3)) 水化动力学 胶凝体系 矿物掺合料
下载PDF
陶砂对石灰石-煅烧黏土-水泥砂浆性能的影响
9
作者 程书凯 游啸 +2 位作者 陈旭勇 陈康 吴子杨 《建筑材料学报》 EI CAS CSCD 北大核心 2024年第1期16-22,共7页
采用轻质陶砂、水泥、偏高岭土和石灰石粉制备了石灰石-煅烧黏土-水泥(LC3)砂浆,研究了陶砂掺量及预湿状态对LC3砂浆干密度、力学性能、抗渗性能及抗氯离子侵蚀能力的影响,分析了其强度形成和微观结构机理.结果表明:随着砂胶比的增大,LC... 采用轻质陶砂、水泥、偏高岭土和石灰石粉制备了石灰石-煅烧黏土-水泥(LC3)砂浆,研究了陶砂掺量及预湿状态对LC3砂浆干密度、力学性能、抗渗性能及抗氯离子侵蚀能力的影响,分析了其强度形成和微观结构机理.结果表明:随着砂胶比的增大,LC3砂浆的干密度和抗压强度逐渐降低,累积吸水量逐渐增大,抗氯离子侵蚀能力逐渐增强;与掺未预湿陶砂的LC3砂浆相比,掺预湿陶砂的LC3砂浆试件28 d抗压强度增大3.4%~10.8%,28 d电通量降低59.0%~80.0%,累积吸水量降低更为显著. LC3体系中石灰石粉的成核作用能够促进水泥早期水化,偏高岭土的火山灰反应有利于细化孔结构,同时预湿陶砂的内养护效应能够维持基体内部湿度继续促进水泥水化,使得掺预湿陶砂的LC3砂浆微观结构更为密实,从而提高了其力学性能、抗渗性能和抗氯离子侵蚀能力. 展开更多
关键词 陶砂 石灰石-煅烧黏土-水泥 力学性能 抗渗性能 孔结构
下载PDF
石灰石煅烧黏土超高性能混凝土抗压力学性能研究
10
作者 杜鹏 范坤杰 《北京工业职业技术学院学报》 2024年第3期11-15,共5页
为加快推进低碳建材产品的研发应用,设计并制备石灰石煅烧黏土超高性能混凝土(LC^(3)-UHPC),研究石灰石和煅烧黏土掺量对LC^(3)-UHPC流动度和抗压强度的影响。试验结果显示:随着石灰石煅烧黏土对水泥替代率的增加,LC^(3)-UHPC的抗压强... 为加快推进低碳建材产品的研发应用,设计并制备石灰石煅烧黏土超高性能混凝土(LC^(3)-UHPC),研究石灰石和煅烧黏土掺量对LC^(3)-UHPC流动度和抗压强度的影响。试验结果显示:随着石灰石煅烧黏土对水泥替代率的增加,LC^(3)-UHPC的抗压强度整体呈下降趋势;当煅烧黏土与石灰石质量比为1∶2、石灰石煅烧黏土对水泥的替代率为30%时,抗压强度最大,为最优配合比;抗压强度越高,形状效应对抗压强度的影响越小。 展开更多
关键词 石灰石煅烧黏土水泥 超高性能混凝土 抗压强度
下载PDF
新型低碳凝胶材料固化锌污染土的试验研究以及分子动力学模拟解析
11
作者 宋恒 孙新坡 +1 位作者 杨宁 卓思敏 《四川文理学院学报》 2023年第2期61-68,共8页
利用石灰石煅烧粘土水泥(LC3)混合制成的新型低碳凝胶材料和普通硅酸盐水泥(OPC)固化/稳定化锌污染土进行研究.通过毒性浸出试验和分子动力学模拟,探究固化污染土的环境安全特性及动力学特性.研究结果表明:常规养护条件下,LC3和OPC固化... 利用石灰石煅烧粘土水泥(LC3)混合制成的新型低碳凝胶材料和普通硅酸盐水泥(OPC)固化/稳定化锌污染土进行研究.通过毒性浸出试验和分子动力学模拟,探究固化污染土的环境安全特性及动力学特性.研究结果表明:常规养护条件下,LC3和OPC固化污染土无侧限抗压强度随龄期和掺量增长而提高;相同条件下,LC3固化锌污染土的强度高于OPC固化土.相较于未处理污染土,LC3固化土的锌离子浸出浓度降低了20.1~94.1倍,OPC固化土的锌离子浸出浓度降低了1.2~319.3倍.在浓度为Zn0.5时,OPC固化效率要优于LC3固化土,而浓度为Zn1.5时,LC3固化试样中锌离子迁移率则更低.通过分子动力学模型研究Zn2+的强度分布、迁移路径和扩散系数.结果表明,LC3主要是通过分子间作用、阳离子交换、吸附以及络合等形式限制锌离子的迁移,在整个纳米孔道内,锌离子的平均扩散系数为0.06×10-8m2/s. 展开更多
关键词 石灰石煅烧粘土水泥 固化/稳定化 分子动力学模拟 毒性浸出
下载PDF
提高525号普通水泥质量的研究 被引量:1
12
作者 吴承祯 孙步荣 +2 位作者 叶峰 朱升云 达庆江 《硅酸盐通报》 CAS CSCD 1999年第2期19-23,共5页
研究了用烧石膏代替二水石膏并掺入少量石灰石对水泥物理性能的影响。实验结果表明,该措施可有效地提高水泥的早期和后期强度。通过水泥石孔结构的测定,证实了水泥石总孔体积减少,其中小于50nm的孔体积百分数增加。
关键词 水泥 烧石膏 石灰石 质量 性能
下载PDF
新型胶凝材料:石灰石煅烧黏土水泥研究进展 被引量:2
13
作者 董烨民 钱雄 +3 位作者 胡传林 侯鹏坤 程新 胡曙光 《硅酸盐学报》 EI CAS CSCD 北大核心 2023年第9期2446-2464,共19页
石灰石煅烧黏土水泥(LC^(3))是一备受关注的新型、低碳胶凝材料体系,通过将煅烧黏土、石灰石粉与石膏复合并替代部分水泥熟料有效提高了胶凝材料的经济和生态效益。本工作分别从LC^(3)体系水化、微观结构及性能、原材料生产及替代、应... 石灰石煅烧黏土水泥(LC^(3))是一备受关注的新型、低碳胶凝材料体系,通过将煅烧黏土、石灰石粉与石膏复合并替代部分水泥熟料有效提高了胶凝材料的经济和生态效益。本工作分别从LC^(3)体系水化、微观结构及性能、原材料生产及替代、应用前景及碳排放几个方面总结了该领域最新研究进展,并针对制约LC^(3)体系在中国应用及发展的关键问题,如黏土质原材料地区性差异、去杂/煅烧工艺、可替代硅铝质原材料可用性等以及该领域研究中存在的不足,如水化热动力学模型的完善、LC^(3)基水泥混凝土材料/结构长期性能研究等进行了讨论和展望。 展开更多
关键词 石灰石煅烧黏土水泥 水化机理 碳排放
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部