Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a low...Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.展开更多
This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connecte...This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. It can response the order within 1 ms. When fault occurs, the switch closes and the capacitors are bypassed, and the fault current is limited by the reactor. Simulation analysis and experiment show that the electromagnetic repulsion force actuator can meet the demand of fast closing switch, it is feasible to develop the FCL with low cost and high reliability.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reduc...The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL.展开更多
The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial...The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial applications.In this study,two objectives with the same dimensional measurement unit,namely,the total capital investment cost of FCLs and circuit breaker loss related to short-circuit currents,are considered.The circuit breaker loss model is developed based on the attenuation rule of the circuit breaker service life.The circuit breaker loss is used to quantify the current-limiting effect to avoid the problem of weight selection in a multi-objective problem.The IEEE 10-generator 39-bus system in New England is used to evaluate the performance of the proposed genetic algorithm(GA)method.Comparative and sensitivity analyses are performed.The results of the optimized plan are validated through simulations,indicating the significant potential of the GA for such optimization.展开更多
The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both de...The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.展开更多
A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron ...A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use.展开更多
Short circuit currents of power systems are growing with an increasing rate, due to the fast development of generation and transmission systems. Current Limiting Reactor is one of the effective short circuit current l...Short circuit currents of power systems are growing with an increasing rate, due to the fast development of generation and transmission systems. Current Limiting Reactor is one of the effective short circuit current limiting devices. This technique is known to be more practical than other available approaches. In this paper, proper application of CLR to HV substations is proposed, based on a comprehensive short circuit analysis of 4 well-known substation bus bar arrangements. Eventually, appropriate place and number of CLRs is recommended for each bus bar arrangement.展开更多
A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch...A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. When fault occurs, the switch closes and bypasses the capacitors, and the fault is limited by the reactor then. Simulated analysis and experiments show that it is feasible to develop the FCL with low cost and high reliability. The effectiveness of transient stability for power system is evaluated by digital simulation.展开更多
A deregulated power market is making short-circuit currents likely to exceed the thermal or mechanical permissible limits of switchgear. Consequently fault current limiters (FCL) become more necessary in power syste...A deregulated power market is making short-circuit currents likely to exceed the thermal or mechanical permissible limits of switchgear. Consequently fault current limiters (FCL) become more necessary in power systems. The use of FCLs has an impact on the protection schemes and functions in power systems. Thus, before FCLs can be applied in the network, the impacts on existing protection system must be understood. Depending on the current limiting technique used, today's protection concepts may have to be adapted or revised to ensure proper network protection selectivity. A relationship between fault current limiters and protection schemes should be established by taking into account both protection and network specific issues, such as the impact of different FCL technologies, existing and new protection concepts, selectivity and innovative network. This paper is presenting a frame work for accomplishing this task.展开更多
The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the oc...The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the occurrence of a disturbance or fault cannot be completely avoided, hence, when it occurs, control measures need to be put in place to limit the fault current, which invariably limit the level of the disturbances. This paper explores the use of Superconductor Fault Current Limiter (SFCL) to improve the transient stability of the Nigeria 330 kV Transmission Network. During a large disturbance, the rotor angle of the generator is enhanced by connecting a Fault Current Limiter (FCL) which reduces the fault current and hence, increases transient stability of the power network. In this study, the most affected generator was taken into consideration in locating the SFCL. The result obtained reveals that the Swing Curve of the generator without FCL increases monotonically which indicates instability, while the Swing Curve of the System with FCL reaches steady state.展开更多
FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtai...FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtain optimal relay settings to achieve coordination in case of not installing DG, then depending on the achieved optimal obtained relay settings, FCL impedance is deduced to ensure relays coordination restoration in case of installing DG. Based on original optimal relay settings, obtained FCL impedance is not the minimum one required to achieve relay coordination. The contribution of this paper is the generation of multi sets of original relay settings that increase the possibility of finding FCL impedance of minimum value which is lower than the calculated value based on original optimal relay settings. The proposed method achieves better economic target by reducing FCL impedance. The proposed approach is implemented and tested on IEEE-39 bus test system.展开更多
Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) int...Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) into an existing distribution network not only inevitably increases fault current levels to levels that may exceed the OCR ratings, but it may also disturb the original overcurrent relay coordination adversely effecting protection selectivity. To analyze the potentially adverse impact of DG on distribution system protective devices with respect to circuit breaker ratings and OCR coordination fault current studies are carried out for common reference test system under the influence of additional DG. The possible advantages of Superconducting Fault Current Limiter (SFCL) as a means to limit the adverse effect of DG on distribution system protection and their effectiveness will be demonstrated. Furthermore, minimum SFCL impedances required to avoid miss-operation of the primary and back-up OCRs are determined. The theoretical analysis will be validated using the IEEE 13-bus distribution test system is used. Both theoretical and simulation results indicate that the proposed application of SFCL is a viable option to effectively mitigate the DG impact on protective devices, thus enhancing the reliability of distribution network interfaced with DG.展开更多
Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC cur...Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.展开更多
In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm i...In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.展开更多
Tehran is located in the Alborz’s mountain range subsidence and alluvial deposits which are formed in the different faults. Though these faults caused changes in Northern Tehran’s alluvium. The geomechanics factors ...Tehran is located in the Alborz’s mountain range subsidence and alluvial deposits which are formed in the different faults. Though these faults caused changes in Northern Tehran’s alluvium. The geomechanics factors on these alluviums made northern area of Tehran a dangerous place to construct. In this article we have tried to determine the zone’s resistance [1], critical depth in excavation and in the end the role of faults in mechanical resistance of alluvium by comparing several pits in the zone of fault or the zone with no fault. For this purpose, the impact of the neighboring building on the pit stability has been investigated in several locations in some part of coarse alluvium of northern Tehran. So engineering methods such as numerical method and limit equilibrium with the help of software like FLAC and SLIDE were used to determine alluvium’s resistance and the critical depth of excavation. It was done in a way that several pits were analyzed and evaluated in the studied area to a depth of 20 meters in the unloaded state of the neighboring buildings, and once even the load of a neighboring 5-storey building placed at a distance of 3 meters from the edge of the considered pit was analyzed and the results were compared.展开更多
基金the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program, No. 2006CB202308)the National Natural Science Foundation of China (Grant No. 40472078)
文摘Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.
文摘This paper presents a new type of fault current limiter (FCL) based on fast closing switch, which is composed of a capacitor bank and a reactor in series. The main control component is a fast closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. It can response the order within 1 ms. When fault occurs, the switch closes and the capacitors are bypassed, and the fault current is limited by the reactor. Simulation analysis and experiment show that the electromagnetic repulsion force actuator can meet the demand of fast closing switch, it is feasible to develop the FCL with low cost and high reliability.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
基金supported by National Natural Science Foundation of China(Nos.51777025,52177131)the Interdisciplinary Program of the Wuhan National High Magnetic Field Center(No.WHMFC202130)Huazhong University of Science and Technology。
文摘The liquid metal current limiter(LMCL)is regarded as a viable solution for reducing the fault current in a power grid.But demonstrating the liquid metal arc plasma self-pinching process of the resistive wall,and reducing the erosion of the LMCL are challenging,not only theoretically,but also practically.In this work,a novel LMCL is designed with a resistive wall that can be connected to the current-limiting circuit inside the cavity.Specifically,a novel fault current limiter(FCL)topology is put forward where the novel LMCL is combined with a fast switch and current-limiting reactor.Further,the liquid metal self-pinch effect is modeled mathematically in three dimensions,and the gas-liquid two-phase dynamic diagrams under different short-circuit currents are obtained by simulation.The simulation results indicate that with the increase of current,the time for the liquid metal-free surface to begin depressing is reduced,and the position of the depression also changes.Different kinds of bubbles formed by the depressions gradually extend,squeeze,and break.With the increase of current,the liquid metal takes less time to break,but breaks still occur at the edge of the channel,forming arc plasma.Finally,relevant experiments are conducted for the novel FCL topology.The arcing process and current transfer process are analyzed in particular.Comparisons of the peak arc voltage,arcing time,current limiting efficiency,and electrode erosion are presented.The results demonstrate that the arc voltage of the novel FCL topology is reduced by more than 4.5times and the arcing time is reduced by more than 12%.The erosions of the liquid metal and electrodes are reduced.Moreover,the current limiting efficiency of the novel FCL topology is improved by 1%–5%.This work lays a foundation for the topology and optimal design of the LMCL.
基金supported by State Grid Science and Technology Projects(SGTYHT/17-JS-199)National Natural Science Foundation of China(51577163).
文摘The fault current limiter(FCL)is an effective measure for improving system stability and suppressing short-circuit fault current.Because of space and economic costs,the optimum placement of FCLs is vital in industrial applications.In this study,two objectives with the same dimensional measurement unit,namely,the total capital investment cost of FCLs and circuit breaker loss related to short-circuit currents,are considered.The circuit breaker loss model is developed based on the attenuation rule of the circuit breaker service life.The circuit breaker loss is used to quantify the current-limiting effect to avoid the problem of weight selection in a multi-objective problem.The IEEE 10-generator 39-bus system in New England is used to evaluate the performance of the proposed genetic algorithm(GA)method.Comparative and sensitivity analyses are performed.The results of the optimized plan are validated through simulations,indicating the significant potential of the GA for such optimization.
文摘The effectiveness of a combination of fault current limiter and thyristor controlled braking resistor on power system stability enhancement and damping turbine shaft torsional oscillations has been studied. If both devices operate at the same bus, the stabilization control scheme can be carried out continuously and with flexibility. As a result, the fault currents are limited, and the generator disturbances and the turbine shaft torsional oscillations are converged quickly. In this paper, the effectiveness of the combination of both devices has been demonstrated by considering 3LG (three-lines-to-ground) fault in a two-machine infinite bus system. Also, temperature rise effect of both devices with various resistance values and weights has been demonstrated. Simulation results indicate a significant power system stability enhancement and damping turbine shaft torsional oscillations as well as with allowable temperature rise.
基金Major State Basic Research Development Program of China ( No.2005CB221505)Research Foundation for the Doctoral Programof Higher Education of China(No.20050248058)
文摘A novel magnetic-controlled switcher type fault current limiter (FCL) based on the topology of the saturated iron core high temperature superconducting FCL is proposed. The magnetic field distribution of the FCL iron core is analyzed by FEA software ANSYS. The current limiting characteristic is investigated by both 3-D field-circuit coupled simulation and Matlab. The experiments on the 220 V/50 A test model show that the FCL can limit the fault current swiftly and effectively,and the FCL has the advantages of simple and reliable structure, flexible control strategy. The simulation and experimental results prove that the theoretical expectation and current limiting performance is satisfactory for practical use.
文摘Short circuit currents of power systems are growing with an increasing rate, due to the fast development of generation and transmission systems. Current Limiting Reactor is one of the effective short circuit current limiting devices. This technique is known to be more practical than other available approaches. In this paper, proper application of CLR to HV substations is proposed, based on a comprehensive short circuit analysis of 4 well-known substation bus bar arrangements. Eventually, appropriate place and number of CLRs is recommended for each bus bar arrangement.
文摘A new type of fault current limiter (FCL) with series compensation based fast-closing switch is proposed. It is composed of a capacitor bank and a reactor in series. The main control component is a fast-closing switch connected in parallel with the capacitors, which is driven by the electromagnetic repulsion force. When fault occurs, the switch closes and bypasses the capacitors, and the fault is limited by the reactor then. Simulated analysis and experiments show that it is feasible to develop the FCL with low cost and high reliability. The effectiveness of transient stability for power system is evaluated by digital simulation.
文摘A deregulated power market is making short-circuit currents likely to exceed the thermal or mechanical permissible limits of switchgear. Consequently fault current limiters (FCL) become more necessary in power systems. The use of FCLs has an impact on the protection schemes and functions in power systems. Thus, before FCLs can be applied in the network, the impacts on existing protection system must be understood. Depending on the current limiting technique used, today's protection concepts may have to be adapted or revised to ensure proper network protection selectivity. A relationship between fault current limiters and protection schemes should be established by taking into account both protection and network specific issues, such as the impact of different FCL technologies, existing and new protection concepts, selectivity and innovative network. This paper is presenting a frame work for accomplishing this task.
文摘The dynamic responses of generators when subjected to disturbances in an interconnected power system have become a major challenge to power utility companies due to increasing stress on the power network. Since the occurrence of a disturbance or fault cannot be completely avoided, hence, when it occurs, control measures need to be put in place to limit the fault current, which invariably limit the level of the disturbances. This paper explores the use of Superconductor Fault Current Limiter (SFCL) to improve the transient stability of the Nigeria 330 kV Transmission Network. During a large disturbance, the rotor angle of the generator is enhanced by connecting a Fault Current Limiter (FCL) which reduces the fault current and hence, increases transient stability of the power network. In this study, the most affected generator was taken into consideration in locating the SFCL. The result obtained reveals that the Swing Curve of the generator without FCL increases monotonically which indicates instability, while the Swing Curve of the System with FCL reaches steady state.
文摘FCL (fault current limiter) is used to solve relays miscoordination problem arises from DG (distributed generation) installation. In most published researches, different optimization methods are developed to obtain optimal relay settings to achieve coordination in case of not installing DG, then depending on the achieved optimal obtained relay settings, FCL impedance is deduced to ensure relays coordination restoration in case of installing DG. Based on original optimal relay settings, obtained FCL impedance is not the minimum one required to achieve relay coordination. The contribution of this paper is the generation of multi sets of original relay settings that increase the possibility of finding FCL impedance of minimum value which is lower than the calculated value based on original optimal relay settings. The proposed method achieves better economic target by reducing FCL impedance. The proposed approach is implemented and tested on IEEE-39 bus test system.
文摘Protection of radial distribution networks is widely based on coordinated inverse time overcurrent relays (OCRs) ensuring both effectiveness and selectivity. However, the integration of distributed generation (DG) into an existing distribution network not only inevitably increases fault current levels to levels that may exceed the OCR ratings, but it may also disturb the original overcurrent relay coordination adversely effecting protection selectivity. To analyze the potentially adverse impact of DG on distribution system protective devices with respect to circuit breaker ratings and OCR coordination fault current studies are carried out for common reference test system under the influence of additional DG. The possible advantages of Superconducting Fault Current Limiter (SFCL) as a means to limit the adverse effect of DG on distribution system protection and their effectiveness will be demonstrated. Furthermore, minimum SFCL impedances required to avoid miss-operation of the primary and back-up OCRs are determined. The theoretical analysis will be validated using the IEEE 13-bus distribution test system is used. Both theoretical and simulation results indicate that the proposed application of SFCL is a viable option to effectively mitigate the DG impact on protective devices, thus enhancing the reliability of distribution network interfaced with DG.
文摘Fault current suppression is the key technology to ensure the safe operation of the DC power distribution system. In order to realize the parameter collabora-tive configuration of the DC circuit breaker and the DC current limiter and improve the fault current suppression capability, the fault current suppression mechanism of the DC power distribution system is revealed based on the circuit model. Then, based on the mathematical model of the DC breaker, the characteristic parameters of DC breaking are extracted, and then the influence of different characteristic parameters on the breaking characteristics of fault current is studied. Finally, the mathematical model of the collaborative process between DC circuit breaker and DC current limiter is established. The charac-teristic parameters of fault current collaborative suppression are extracted. The coupling effects of different characteristic parameters on the fault current col-laborative suppression are studied. The principle of collaborative configuration of DC circuit breaker and DC current limiter is proposed, and the collaborative suppression ability of DC circuit breaker and DC current limiter to fault current is fully exploited to ensure the safe and reliable operation of the DC power distribution system.
基金supported by the National Natural Science Foundation of China(61100103)
文摘In order to detect and estimate faults in discrete lin-ear time-varying uncertain systems, the discrete iterative learning strategy is applied in fault diagnosis, and a novel fault detection and estimation algorithm is proposed. And the threshold limited technology is adopted in the proposed algorithm. Within the chosen optimal time region, residual signals are used in the proposed algorithm to correct the introduced virtual faults with iterative learning rules, making the virtual faults close to these occurred in practical systems. And the same method is repeated in the rest optimal time regions, thereby reaching the aim of fault diagnosis. The proposed algorithm not only completes fault detection and estimation for discrete linear time-varying uncertain systems, but also improves the reliability of fault detection and decreases the false alarm rate. The final simulation results verify the validity of the proposed algorithm.
文摘Tehran is located in the Alborz’s mountain range subsidence and alluvial deposits which are formed in the different faults. Though these faults caused changes in Northern Tehran’s alluvium. The geomechanics factors on these alluviums made northern area of Tehran a dangerous place to construct. In this article we have tried to determine the zone’s resistance [1], critical depth in excavation and in the end the role of faults in mechanical resistance of alluvium by comparing several pits in the zone of fault or the zone with no fault. For this purpose, the impact of the neighboring building on the pit stability has been investigated in several locations in some part of coarse alluvium of northern Tehran. So engineering methods such as numerical method and limit equilibrium with the help of software like FLAC and SLIDE were used to determine alluvium’s resistance and the critical depth of excavation. It was done in a way that several pits were analyzed and evaluated in the studied area to a depth of 20 meters in the unloaded state of the neighboring buildings, and once even the load of a neighboring 5-storey building placed at a distance of 3 meters from the edge of the considered pit was analyzed and the results were compared.