A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR...A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.展开更多
Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(...Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(T)),which is also a typical geometry in fracture analysis.The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses.The real weld configurations are simplified as a strip,and different weld strength mis-matching ratio M,crack depth/width ratio a/W and weld width 2H are in consideration.As a result,it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M,a/W and ligament-to-weld width ratio(W-a)/H.Moreover,useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T).For the EBW joints with SEC(T),the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal,when M changing from 1.6 to 0.6.When M decreasing to 0.4,the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of(W-a)/H.The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T).The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).展开更多
The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas,such as oil and gas indus- try,power plant engineering and chemi...The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas,such as oil and gas indus- try,power plant engineering and chemical factories.An iterative algorithm is presented for the kinematic limit analysis of 3-D rigid-perfectly plastic bodies.A numerical path scheme for radial loading is adopted to deal with complex multi-loading systems.The numerical procedure has been applied to carry out the plastic collapse analysis of pipelines with part-through slot under internal pressure,bending moment and axial force.The effects of various shapes and sizes of part-through slots on the collapse loads of pipelines are systematically investigated and evaluated.Some typical failure modes corresponding to different configurations of slots and loading forms are studied.展开更多
The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch comer in drawing process of cone shape part. Based on tension instabilit...The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch comer in drawing process of cone shape part. Based on tension instability theory, the formula for calculating fracture limit load of cone shape part in drawing process is derived. Also, the formula is analyzed and verified by experiment.展开更多
The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different si...The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different size defects are established. The limit loads of these pipes are researched using the nonlinear finite element method. The effect of defect parameters of the local wall-thinning pipes on the limit load is discussed. The results show that limit loads decrease obviously when the depths and lengths of the defect increase. However, when the defect length reaches a certain value, the effect of defect length on limit loads is not significant. These results are compared with the results of the method of API 579. When the defect length is adequately small, the results of FEM are in good agreement with the ones of APl 579, but when the defect depth and length is adequately large, the API 579 is not suitable.展开更多
By means of elastic-plastic finite element analysis, a systematic nonlinear analysis of material and geometry has been carried out for submarine pipelines. A criterion for deriving limit load is studied. Based on this...By means of elastic-plastic finite element analysis, a systematic nonlinear analysis of material and geometry has been carried out for submarine pipelines. A criterion for deriving limit load is studied. Based on this criterion, the limit load for corroded submarine pipelines is calculated. The corrosion length, corrosion depth and corrosion width affect the limit load. A solution to limit load is proposed and proved valid through comparison of the solution with burst test results and ASME B31G solutions.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretica...With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.展开更多
Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to...Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.展开更多
The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the im...The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the improvement of the load-carrying capacity or the reduction of the weight of plates, the yield line analytical method is employed in this paper to design the bulkhead plate to improve economy and increase the effiective load. Besides, a further sutdy of this method has been made theoretically and experimentally, and the data of the limited load-carrying capacity of the plate have been obtained. Furthermore, the safety coefficients for such a method are presented, which can be used as reference for related departments and staffs.展开更多
基金supported by the National Natural Science Foundation of China (No. 50768001)the Foundation of New Century Excellent Talents in University (No. NCET-04-0834)the Guangxi Natural Science Foundation (No. 0728026)
文摘A new strategy for elastic modulus adjustment is proposed based on the element bearing ratio (EBR),and the elastic modulus reduction method (EMRM) is proposed for limit load evaluation of frame structures. The EBR is defined employing the generalized yield criterion,and the reference EBR is determined by introducing the extrema and the degree of uniformity of EBR in the structure. The elastic modulus in the element with an EBR greater than the reference one is reduced based on the linear elastic finite element analysis and the equilibrium of strain energy. The lower-bound of limit-loads of frame structures are analyzed and the numerical example demonstrates the flexibility,accuracy and effciency of the proposed method.
基金supported by National Natural Science Foundation of China (Grant No. 50935008)
文摘Limit loads are widely studied and several limit load solutions are proposed to some typical geometry of weldments.However,there are no limit load solutions exist for the single edge crack weldments in tension(SEC(T)),which is also a typical geometry in fracture analysis.The mis-matching limit load for thick plate with SEC(T) are investigated and the special limit load solutions are proposed based on the available mis-matching limit load solutions and systematic finite element analyses.The real weld configurations are simplified as a strip,and different weld strength mis-matching ratio M,crack depth/width ratio a/W and weld width 2H are in consideration.As a result,it is found that there exists excellent agreement between the limit load solutions and the FE results for almost all the mis-matching ration M,a/W and ligament-to-weld width ratio(W-a)/H.Moreover,useful recommendations are given for evaluating the limit loads of the EBW structure with SEC(T).For the EBW joints with SEC(T),the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal,when M changing from 1.6 to 0.6.When M decreasing to 0.4,the mis-matching limit loads can be obtained assuming that the components are wholly made of base metal only for large value of(W-a)/H.The recommendations may be useful for evaluating the limit loads of the EBW structures with SEC(T).The engineering simplifications are given for assessing the limit loads of electron beam welded structure with SEC(T).
基金Project supported by the Ministry of Science and Technology of China (No.2001BA803B03-05).
文摘The integrity assessment of defective pipelines represents a practically important task of structural analysis and design in various technological areas,such as oil and gas indus- try,power plant engineering and chemical factories.An iterative algorithm is presented for the kinematic limit analysis of 3-D rigid-perfectly plastic bodies.A numerical path scheme for radial loading is adopted to deal with complex multi-loading systems.The numerical procedure has been applied to carry out the plastic collapse analysis of pipelines with part-through slot under internal pressure,bending moment and axial force.The effects of various shapes and sizes of part-through slots on the collapse loads of pipelines are systematically investigated and evaluated.Some typical failure modes corresponding to different configurations of slots and loading forms are studied.
基金This project is supported by Doctoral Education Foundation of Ministry ofEducation of China (No.96021602).
文摘The deformation characters and load status of the blank's potential fracture zone are analyzed at the moment when blank is approaching to punch comer in drawing process of cone shape part. Based on tension instability theory, the formula for calculating fracture limit load of cone shape part in drawing process is derived. Also, the formula is analyzed and verified by experiment.
基金supported by the National High Technol-ogy Research and Development Program of China(2007AA04Z404)Natural Science Basic Research Plan in Shaanxi Province of China (SJ08A17)the Technical Innovation Foundation of NWPU(2008KJ02019)
文摘The loss of metal in a pipe due to corrosion usually results in localized thinned areas with various depths and an irregular shape on its surface. In this paper, a number of numerical models of pipes with different size defects are established. The limit loads of these pipes are researched using the nonlinear finite element method. The effect of defect parameters of the local wall-thinning pipes on the limit load is discussed. The results show that limit loads decrease obviously when the depths and lengths of the defect increase. However, when the defect length reaches a certain value, the effect of defect length on limit loads is not significant. These results are compared with the results of the method of API 579. When the defect length is adequately small, the results of FEM are in good agreement with the ones of APl 579, but when the defect depth and length is adequately large, the API 579 is not suitable.
基金The project was financially supported by the National Technology Research and Development of China (863 Program)(Grant No.2001AA602021)
文摘By means of elastic-plastic finite element analysis, a systematic nonlinear analysis of material and geometry has been carried out for submarine pipelines. A criterion for deriving limit load is studied. Based on this criterion, the limit load for corroded submarine pipelines is calculated. The corrosion length, corrosion depth and corrosion width affect the limit load. A solution to limit load is proposed and proved valid through comparison of the solution with burst test results and ASME B31G solutions.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金Project (No. X106871) supported by the Natural Science Foundation of Zhejiang Province,China
文摘With von Mises yield criterion,the loading range of Net Section Collapse(NSC) Criteria is extended from combined tension and bending loadings to combined bending,torsion and internal pressure loadings.A new theoretical analyzing method of plastic limit load for pressure pipe with incomplete welding defects based on the extended NSC Criteria is presented and the correlative formulas are deduced,the influences of pipe curvature,circumferential length and depth of incomplete welding defects on the plastic limit load of pressure pipe are considered as well in this method.Meanwhile,according to the orthogonal experimental design method,the plastic limit loads are calculated by the finite element method and compared with the theoretical values.The results show that the expressions of plastic limit load of pressure pipe with incomplete welding defects under bending,torsion and internal pressure based on extended NSC criteria are reliable.The study provides an important theoretical basis for the establishment of safety assessment measure towards pressure pipe with incomplete welding defects.
基金Supported by National High Technology Research and Development Program of China (Grant No.2011AA11A265)National Natural Science Foundation of China (Grant Nos.50875173,51105241)Shanghai Municipal Natural Science Foundation of China (Grant No.11ZR1414700)
文摘Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.
文摘The elastic-plastic method is often used in designing the inner flat bulkhead plates of submarines, and the upper structure of ships and drilling platforms. Such bulkhead plates can bear the load only once. For the improvement of the load-carrying capacity or the reduction of the weight of plates, the yield line analytical method is employed in this paper to design the bulkhead plate to improve economy and increase the effiective load. Besides, a further sutdy of this method has been made theoretically and experimentally, and the data of the limited load-carrying capacity of the plate have been obtained. Furthermore, the safety coefficients for such a method are presented, which can be used as reference for related departments and staffs.