We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the x and z directions and produces parameter estimation with precision beating the standard quantum limit.The a...We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the x and z directions and produces parameter estimation with precision beating the standard quantum limit.The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameterΦ(to be estimated)assumed as uniformly distributed between 0 and 2πwhile fixed in each estimation.One estimation ofΦcan be produced with every two magnetic susceptibility data measured along the two axes respectively,which has an imprecision scaling(1.43±0.02)/N^(0.687±0.003)with respect to the number N of the atomic spins.The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.T2121001,11934018,and U1801661)Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)+2 种基金the Key-Area Research and Development Program of GuangDong Province,China(Grant No.2018B030326001)Guangdong Provincial Key Laboratory(Grant No.2019B121203002)the Science,Technology and Innovation Commission of Shenzhen Municipality(Grant Nos.KYTDPT20181011104202253 and 2016ZT06D348)。
文摘We report a metrology scheme which measures the magnetic susceptibility of an atomic spin ensemble along the x and z directions and produces parameter estimation with precision beating the standard quantum limit.The atomic ensemble is initialized via one-axis spin squeezing with optimized squeezing time and parameterΦ(to be estimated)assumed as uniformly distributed between 0 and 2πwhile fixed in each estimation.One estimation ofΦcan be produced with every two magnetic susceptibility data measured along the two axes respectively,which has an imprecision scaling(1.43±0.02)/N^(0.687±0.003)with respect to the number N of the atomic spins.The measurement scheme is easy to implement and is robust against the measurement fluctuation caused by environment noise and measurement defects.