In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confine...In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.展开更多
The pipe curtain structure method(PSM)is a novel construction method to control ground deformation strictly.Compared with the traditional pipe-roofing and pipe jacking method,the connection between pipes in large spac...The pipe curtain structure method(PSM)is a novel construction method to control ground deformation strictly.Compared with the traditional pipe-roofing and pipe jacking method,the connection between pipes in large spacings using PSM is widely acknowledged as a unique construction procedure.Further study on this connection procedure is needed to resolve similar cases in that the pipes are inevitably constructed on both sides of existing piles.Cutting the steel plate during the connection procedure is the first step,which is crucial to control the safety and stability of the surrounding environment and existing structures.The deformation mechanism and limit support pressure of the cutting steel plate during the connection between pipes in large spacings are studied in this paper,relying on the undercrossing Yifeng gate tower project of Jianning West Road River Crossing Channel in Nanjing,China.A modified 3D wedge-prism failure model is proposed using the 3D discrete element method.Combined with Terzaghi loose earth pressure theory and the limit equilibrium theory,the analytical solutions for the limit support pressure of the excavation face of the cutting steel plate are derived.The modified 3D wedge-prism failure model and corresponding analytical solutions are categorised into two cases:(a)unilateral cutting scheme,and(b)bilateral cutting scheme.The analytical solutions for the two cases are verified from the numerical simulation and in-situ data and compared with the previous solutions.The comparative analysis between the unilateral and bilateral cutting schemes indicates that the bilateral cutting scheme can be adopted as a priority.The bilateral cutting scheme saves more time and induces less ground deformation than the unilateral one due to the resistance generated from the superimposed wedge.In addition,the parametric sensitivity analysis is carried out using an orthogonal experimental design.The main influencing factors arranged from high to low are the pipe spacing,the cutting size,and the pipe burial depth.The ground deformation increases with the increased cutting size and pipe spacing.The pipe burial depth slightly affects the ground deformation if the other two factors are minor.Cutting steel plates in small sizes,excavating soil under low disturbance,and supporting pipes for high frequency can effectively reduce the ground surface subsidence.展开更多
This paper focuses on theoretical analytical models to calculate the limit support pressure and vertical earth pressure on the cutting face for tunnels.The failure zone is divided into two parts:a sliding failure zone...This paper focuses on theoretical analytical models to calculate the limit support pressure and vertical earth pressure on the cutting face for tunnels.The failure zone is divided into two parts:a sliding failure zone and an upper loosen zone,and the limit support pressure calculation equation is derived.To verify the rationality of the theoretical model,it was compared with the existing theory,numerical simulation,and centrifugal test,and then the parameter analysis was carried out.The results show that the results of this paper agree well with the existing theory,numerical simulation,and centrifugal test.The inclination angle of the proposed mechanism is determined based on the results of the existing centrifuge test,and the recommended inclination angle is between 52°+φ/2 and 54°+φ/2.The method is proven to be safe and accurate.It can provide a theoretical basis for similar projects.展开更多
We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact ...We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.展开更多
基金Project(ZDRW-ZS-2021-3)supported by the Key Deployment Projects of Chinese Academy of SciencesProjects(52179116,51991392)supported by the National Natural Science Foundation of China。
文摘In the process of shield tunneling through soft soil layers,the presence of confined water ahead poses a significant threat to the stability of the tunnel face.Therefore,it is crucial to consider the impact of confined water on the limit support pressure of the tunnel face.This study employed the finite element method(FEM)to analyze the limit support pressure of shield tunnel face instability within a pressurized water-containing layer.Subsequently,a multiple linear regression approach was applied to derive a concise solution formula for the limit support pressure,incorporating various influencing factors.The analysis yields the following conclusions:1)The influence of confined water on the instability mode of the tunnel face in soft soil layers makes the displacement response of the strata not significant when the face is unstable;2)The limit support pressure increases approximately linearly with the pressure head,shield tunnel diameter,and tunnel burial depth.And inversely proportional to the thickness of the impermeable layer,soil cohesion and internal friction angle;3)Through an engineering case study analysis,the results align well with those obtained from traditional theoretical methods,thereby validating the rationality of the equations proposed in this paper.Furthermore,the proposed equations overcome the limitation of traditional theoretical approaches considering the influence of changes in impermeable layer thickness.It can accurately depict the dynamic variation in the required limit support pressure to maintain the stability of the tunnel face during shield tunneling,thus better reflecting engineering reality.
基金financial support by the National Natural Science Foundation of China(Grant No.52108363)the Postdoctoral Research Foundation of China(Grant Nos.2021M700654 and 2023T160074)+2 种基金the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210)the Liaoning Revitalization Talents Program(Grant No.XLYC1905015)the Key Project of Liaoning Education Department,China(Grant No.LJKZZ20220003).
文摘The pipe curtain structure method(PSM)is a novel construction method to control ground deformation strictly.Compared with the traditional pipe-roofing and pipe jacking method,the connection between pipes in large spacings using PSM is widely acknowledged as a unique construction procedure.Further study on this connection procedure is needed to resolve similar cases in that the pipes are inevitably constructed on both sides of existing piles.Cutting the steel plate during the connection procedure is the first step,which is crucial to control the safety and stability of the surrounding environment and existing structures.The deformation mechanism and limit support pressure of the cutting steel plate during the connection between pipes in large spacings are studied in this paper,relying on the undercrossing Yifeng gate tower project of Jianning West Road River Crossing Channel in Nanjing,China.A modified 3D wedge-prism failure model is proposed using the 3D discrete element method.Combined with Terzaghi loose earth pressure theory and the limit equilibrium theory,the analytical solutions for the limit support pressure of the excavation face of the cutting steel plate are derived.The modified 3D wedge-prism failure model and corresponding analytical solutions are categorised into two cases:(a)unilateral cutting scheme,and(b)bilateral cutting scheme.The analytical solutions for the two cases are verified from the numerical simulation and in-situ data and compared with the previous solutions.The comparative analysis between the unilateral and bilateral cutting schemes indicates that the bilateral cutting scheme can be adopted as a priority.The bilateral cutting scheme saves more time and induces less ground deformation than the unilateral one due to the resistance generated from the superimposed wedge.In addition,the parametric sensitivity analysis is carried out using an orthogonal experimental design.The main influencing factors arranged from high to low are the pipe spacing,the cutting size,and the pipe burial depth.The ground deformation increases with the increased cutting size and pipe spacing.The pipe burial depth slightly affects the ground deformation if the other two factors are minor.Cutting steel plates in small sizes,excavating soil under low disturbance,and supporting pipes for high frequency can effectively reduce the ground surface subsidence.
基金The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.51978019 and 51978018)Natural Science Foundation of Beijing Municipality,China(Grant Nos.8222004 and 8222005).
文摘This paper focuses on theoretical analytical models to calculate the limit support pressure and vertical earth pressure on the cutting face for tunnels.The failure zone is divided into two parts:a sliding failure zone and an upper loosen zone,and the limit support pressure calculation equation is derived.To verify the rationality of the theoretical model,it was compared with the existing theory,numerical simulation,and centrifugal test,and then the parameter analysis was carried out.The results show that the results of this paper agree well with the existing theory,numerical simulation,and centrifugal test.The inclination angle of the proposed mechanism is determined based on the results of the existing centrifuge test,and the recommended inclination angle is between 52°+φ/2 and 54°+φ/2.The method is proven to be safe and accurate.It can provide a theoretical basis for similar projects.
文摘We report a comprehensive numerical study of super resolution (SR) structured illumination microscopy (SIM) utilizing the classic Heintzmann-Cremer SIM process and algorithm. In particular, we investigated the impact of the diffraction limit of the underlying imaging system on the optimal SIM grating frequency that can be used to obtain the highest SR enhancement with non-continuous spatial frequency support. Besides confirming the previous theoretical and experimental work that SR-SIM can achieve an enhancement close to 3 times the diffraction limit with grating pattern illuminations, we also observe and report a series of more subtle effects of SR-SIM with non-continuous spatial frequency support. Our simulations show that when the SIM grating frequency exceeds twice that of the diffraction limit, the higher SIM grating frequency can help achieve a higher SR enhancement for the underlying imaging systems whose diffraction limit is low, though this enhancement is obtained at the cost of losing resolution at some lower resolution targets. Our simulations also show that, for underlying imaging systems with high diffraction limits, however, SR-SIM grating frequencies above twice the diffraction limits tend to bring no significant extra enhancement. Furthermore, we observed that there exists a limit grating frequency above which the SR enhancement effect is lost, and the reconstructed images essentially have the same resolution as the one obtained directly from the underlying imaging system without using the SIM process.