A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving ...A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving 50 ft transmission lines and a pair of feedback networks for offset cancellation. At a positive supply voltage of 2 V and a negative supply voltage of - 2V, the power dissipation is about 280 mW. The small-signal gain is higher than 46 dB and the input dynamic range is about 40 dB with a constant single-ended output voltage swing of 400 mV. Satisfactory eye-diagrams are obtained at the bit rate of 12 Gbit/s limited by the test set-up. The chip area is 1.15 mm ×0.7 mm.展开更多
针对构网型变流器(grid-forming voltage source converter,GFM-VSC)系统在大扰动下暂态稳定问题,现有研究未能充分考虑电力电子电源暂态快速响应与控制可塑的特点。为此,以GFM-VSC为对象,借助等面积法原理与相平面图法,从能量角度揭示...针对构网型变流器(grid-forming voltage source converter,GFM-VSC)系统在大扰动下暂态稳定问题,现有研究未能充分考虑电力电子电源暂态快速响应与控制可塑的特点。为此,以GFM-VSC为对象,借助等面积法原理与相平面图法,从能量角度揭示了其暂态响应机制与传统同步机系统的差异,分析了控制塑造下GFM-VSC系统的暂态稳定机理;然后,针对大扰动下易于触发的限幅环节,分析了系统无法自主退出限幅而失稳的机制,并提出了附带电流分配系数的改进限幅策略,有效增强了系统暂态稳定性。最后,通过仿真验证了理论分析与改进方法的正确性。展开更多
This paper presents a 155Mbps limiting amplifier for STM-1 systems of SDH optical communication. It is implemented in CSMC 0.5μm CMOS technology. Under a supply voltage of 3.3V, it has a power consumption of 198mW. T...This paper presents a 155Mbps limiting amplifier for STM-1 systems of SDH optical communication. It is implemented in CSMC 0.5μm CMOS technology. Under a supply voltage of 3.3V, it has a power consumption of 198mW. The core of the circuit is composed of 6 cascaded amplifiers that are in a conventional structure of differential pairs,an output buffer, and a DC offset cancellation feedback loop. The small signal gain can be adjusted from 74 to 44dB by an off-chip resistor. The chip was packaged before being tested. The experimental results indicate that the circuit has an input dynamic range of 54dB and provides a single-ended output swing of 950mV. Its output eye diagram remains satisfactory when the pseudo-random bit sequence (PRBS) input speed reaches 400Mbps.展开更多
Electroencephalogram(EEG)is one of the most important bioelectrical signals related to brain activity and plays a crucial role in clinical medicine.Driven by continuously expanding applications,the development of EEG ...Electroencephalogram(EEG)is one of the most important bioelectrical signals related to brain activity and plays a crucial role in clinical medicine.Driven by continuously expanding applications,the development of EEG materials and technology has attracted considerable attention.However,systematic analysis of the sustainable development of EEG materials and technology is still lacking.This review discusses the sustainable development of EEG materials and technology.First,the developing course of EEG is introduced to reveal its significance,particularly in clinical medicine.Then,the sustainability of the EEG materials and technology is discussed from two main aspects:integrated systems and EEG electrodes.For integrated systems,sustainability has been focused on the developing trend toward mobile EEG systems and big-data monitoring/analyzing of EEG signals.Sustainability is related to miniaturized,wireless,portable,and wearable systems that are integrated with big-data modeling techniques.For EEG electrodes and materials,sustainability has been comprehensively analyzed from three perspectives:performance of different material/structural categories,sustainablematerials for EEGelectrodes,and sustainable manufacturing technologies.In addition,sustainable applications of EEG have been presented.Finally,the sustainable development of EEG materials and technology in recent decades is summarized,revealing future possible research directions as well as urgent challenges.展开更多
文摘A 12 Gbit/s limiting amplifier for fiber-optic transmission system is realized in a 2μm GaAs HBT technology. The whole circuit consists of an input buffer, three similar amplifier cells, an output buffer for driving 50 ft transmission lines and a pair of feedback networks for offset cancellation. At a positive supply voltage of 2 V and a negative supply voltage of - 2V, the power dissipation is about 280 mW. The small-signal gain is higher than 46 dB and the input dynamic range is about 40 dB with a constant single-ended output voltage swing of 400 mV. Satisfactory eye-diagrams are obtained at the bit rate of 12 Gbit/s limited by the test set-up. The chip area is 1.15 mm ×0.7 mm.
文摘针对构网型变流器(grid-forming voltage source converter,GFM-VSC)系统在大扰动下暂态稳定问题,现有研究未能充分考虑电力电子电源暂态快速响应与控制可塑的特点。为此,以GFM-VSC为对象,借助等面积法原理与相平面图法,从能量角度揭示了其暂态响应机制与传统同步机系统的差异,分析了控制塑造下GFM-VSC系统的暂态稳定机理;然后,针对大扰动下易于触发的限幅环节,分析了系统无法自主退出限幅而失稳的机制,并提出了附带电流分配系数的改进限幅策略,有效增强了系统暂态稳定性。最后,通过仿真验证了理论分析与改进方法的正确性。
文摘This paper presents a 155Mbps limiting amplifier for STM-1 systems of SDH optical communication. It is implemented in CSMC 0.5μm CMOS technology. Under a supply voltage of 3.3V, it has a power consumption of 198mW. The core of the circuit is composed of 6 cascaded amplifiers that are in a conventional structure of differential pairs,an output buffer, and a DC offset cancellation feedback loop. The small signal gain can be adjusted from 74 to 44dB by an off-chip resistor. The chip was packaged before being tested. The experimental results indicate that the circuit has an input dynamic range of 54dB and provides a single-ended output swing of 950mV. Its output eye diagram remains satisfactory when the pseudo-random bit sequence (PRBS) input speed reaches 400Mbps.
基金National Natural Science Foundation of China,Grant/Award Number:62271458Sichuan Province Central Government Guides Local Science and Technology Development Project,Grant/Award Number:2023ZYD0015。
文摘Electroencephalogram(EEG)is one of the most important bioelectrical signals related to brain activity and plays a crucial role in clinical medicine.Driven by continuously expanding applications,the development of EEG materials and technology has attracted considerable attention.However,systematic analysis of the sustainable development of EEG materials and technology is still lacking.This review discusses the sustainable development of EEG materials and technology.First,the developing course of EEG is introduced to reveal its significance,particularly in clinical medicine.Then,the sustainability of the EEG materials and technology is discussed from two main aspects:integrated systems and EEG electrodes.For integrated systems,sustainability has been focused on the developing trend toward mobile EEG systems and big-data monitoring/analyzing of EEG signals.Sustainability is related to miniaturized,wireless,portable,and wearable systems that are integrated with big-data modeling techniques.For EEG electrodes and materials,sustainability has been comprehensively analyzed from three perspectives:performance of different material/structural categories,sustainablematerials for EEGelectrodes,and sustainable manufacturing technologies.In addition,sustainable applications of EEG have been presented.Finally,the sustainable development of EEG materials and technology in recent decades is summarized,revealing future possible research directions as well as urgent challenges.