Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained ...Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained by taking the asymptotic limit of the rational polynomial. A rational function with second-degree polynomials both in the numerator and denominator is found to produce excellent results. Sums of series with different characteristics such as alternating signs are considered for testing the performance of the proposed approach.展开更多
文摘Sums of convergent series for any desired number of terms, which may be infinite, are estimated very accurately by establishing definite rational polynomials. For infinite number of terms the sum infinite is obtained by taking the asymptotic limit of the rational polynomial. A rational function with second-degree polynomials both in the numerator and denominator is found to produce excellent results. Sums of series with different characteristics such as alternating signs are considered for testing the performance of the proposed approach.