Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sp...Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.展开更多
A hypothetical photon mass m_(γ) can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed di...A hypothetical photon mass m_(γ) can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed distance. The dispersion measure and redshift measurements of fast radio bursts(FRBs) have been widely used to constrain the rest mass of the photon. However, all current studies analyzed the effect of the frequency-dependent dispersion for massive photons in the standard ΛCDM cosmological context. In order to alleviate the circularity problem induced by the presumption of a specific cosmological model based on the fundamental postulate of the masslessness of photons, here we employ a new model-independent smoothing technique, artificial neural network(ANN), to reconstruct the Hubble parameter H(z) function from 34 cosmic-chronometer measurements.By combining observations of 32 well-localized FRBs and the H(z) function reconstructed by ANN, we obtain an upper limit of m_(γ) ≤ 3.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 2.0 × 10^(-15)eV/c^(2)(m_(γ) ≤ 6.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 3.6 × 10^(-15)eV/c_(2)) at the 1σ(2σ) confidence level. This is the first cosmology-independent photon mass limit derived from extragalactic sources.展开更多
Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and...Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties.Therefore,studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil.In this study,molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures,and the influence of pore size and shale oil hydrocarbon composition on the adsorption properties in the pores was analyzed.The results show that different molecules have different adsorption capacities in shale oil pores,with lighter hydrocarbon components(C6H14)exhibiting stronger adsorption abilities.For the same adsorbed molecule,the adsorption amount linearly increases with the increase in pore diameter,but larger pores contribute more to shale oil adsorption.In shale pores,the thickness of the adsorption layer formed by shale oil molecules ranges from 0.4 to 0.5 nm,which is similar to the width of alkane molecules.Shale oil in the adsorbed state that is difficult to be exploited is mainly concentrated in the first adsorption layer.Among them,the volume fraction of adsorbed shale oil in 6 nm shale pores is 40.8%,while the volume fraction of shale oil that is difficult to be exploited is 16.2%.展开更多
Purpose–This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration.Consequently,a low-cost,data-driven approach was proposed for analyzing speed-...Purpose–This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration.Consequently,a low-cost,data-driven approach was proposed for analyzing speed-related acceleration limits in metro systems.Design/methodology/approach–A portable sensing terminal was developed to realize easy and efficient detection of car body acceleration.Further,field measurements were performed on a 51.95-km metro line.Data from 272 metro sections were tested as a case study,and a quantile regression method was proposed to fit the control limits of the car body acceleration at different speeds using the measured data.Findings–First,the frequency statistics of the measured data in the speed-acceleration dimension indicated that the car body acceleration was primarily concentrated within the constant speed stage,particularly at speeds of 15.4,18.3,and 20.9 m/s.Second,resampling was performed according to the probability density distribution of car body acceleration for different speed domains to achieve data balance.Finally,combined with the traditional linear relationship between speed and acceleration,the statistical relationships between the speed and car body acceleration under different quantiles were determined.We concluded the lateral/vertical quantiles of 0.8989/0.9895,0.9942/0.997,and 0.9998/0.993 as being excellent,good,and qualified control limits,respectively,for the lateral and vertical acceleration of the car body.In addition,regression lines for the speedrelated acceleration limits at other quantiles(0.5,0.75,2s,and 3s)were obtained.Originality/value–The proposed method is expected to serve as a reference for further studies on speedrelated acceleration limits in rail transit systems.展开更多
Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is no...Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is not well known. Three distinct soil samples were used in this investigation. The findings indicated the effect of varied mineral composition proportions and fines amount on the liquid limit, plastic limit, and plasticity index as assessed by the Casagrande test and hand-rolling method. The fluctuation of maximum dry density and optimal moisture content with these three soils has also been studied. Furthermore, correlations were established to indicate the compaction parameters and the amount of minerals and particles in the soil. The data show that the mineral content of the soil has a direct impact on the Atterberg limits and compaction characteristics. Soils containing larger percentages of expansive minerals, such as montmorillonite, have more flexibility and volume change capability. Mineral composition influences compaction parameters such as maximum dry density, ideal water content, axial strain, and axial stress. Soils with a larger proportion of fines, such as Soil 2 and Soil 3, have stronger flexibility and lower compaction qualities, with higher ideal water content and lower maximum dry density. Soil 1 has moderate flexibility and intermediate compaction qualities due to its low fines percentage. The effect of different mineral compositions and fines on the Atterberg limits and compaction characteristics of soils can be used to predict the behavior of compacted soils encountered in engineering practices, reducing the time and effort required to assess soil suitability for engineering use.展开更多
To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the...To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the photosynthetic characteristics and grain yield of winter wheat.Four irrigation lower limits were set for initiating irrigation(i.e.,light drought(LD,50%,55%,60%and 50%of field holding capacity(FC)at the seedling-regreening,jointing,heading and filling-ripening stages,respectively),medium drought(MD,40%,50%,55%and 45%of FC at the same stages,respectively),adequate moisture(CK1,60%,65%,70%and 60%of FC at the same stages,respectively),heavy drought(CK2,35%,40%,45%and 40%of FC at the same stages,respectively))and five irrigation quota per event(30,60,90,120 and 180 mm)were set for each lower limit.We found that the increase of drought stress is conducive to normal photosynthesis of winter wheat leaves which is supported by the following findings.First,photosynthetic rate(Pn)of LD60 treatment was higher than that of LD30,LD90,LD120,LD180,MD30,MD60,MD90,MD120 and MD180.Then,Under the 90 mm irrigation quota treatment,the yield of winter wheat basically increased with the increase of irrigation’s lower limit.Moreover,With the increase in irrigation quota,the yield of winter wheat increased,and the water use efficiency(WUE)of winter wheat increased at first and then decreased.In addition,compared with the LD30,MD30,MD60,MD90,MD120,and MD180,the yield of winter wheat in LD60 treatment increased by about 3.23%(3-year average),32.3%,19.9%,11.7%,10.1%,and 14.6%.At the same time,the WUE with LD60 treatment of winter wheat was significantly higher than LD90,LD120,LD180,MD30,MD60,MD90,MD120,MD180 treatments.There was a positive correlation between soil volumetric water content and Pn and between yield and Pn.The key period for yield formation in winter wheat is 180 days after sowing.In conclusion,to achieve the dual goals of stable winter wheat yield and efficient utilization of water resources in this region,the suitable threshold for initiating deficit irrigation of winter wheat is the LD60 treatment.This conclusion provides data support for water-saving and stable yield of winter wheat in this area.展开更多
Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative posit...Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
Displacement control algorithms commonly used to evaluate axial force-bending moment(PM)diagrams may lead to incorrect interpretations of the strength envelopes for asymmetric sections.This paper aims to offer valuabl...Displacement control algorithms commonly used to evaluate axial force-bending moment(PM)diagrams may lead to incorrect interpretations of the strength envelopes for asymmetric sections.This paper aims to offer valuable insights by comparing existing displacement control algorithms with a newly proposed force control algorithm.The main focus is on the PM diagrams of three example sections that exhibit varying degrees of asymmetry.The comparative study indicates that conventional displacement control algorithms inevitably introduce non-zero out-of-plane bending moments.The reported PM diagram in such cases erroneously neglects the out-of-plane moment and fails to represent the strength envelope accurately.This oversight results in significant and unconservative errors when verifying the strength of asymmetric sections.展开更多
Based on archetype analysis of system dynamics,the limits-to-growth archetype of Peter Senge(one of his eight archetypes) was borrowed,and various influence factors of rural tourism development combined to construct t...Based on archetype analysis of system dynamics,the limits-to-growth archetype of Peter Senge(one of his eight archetypes) was borrowed,and various influence factors of rural tourism development combined to construct the limits-to-growth archetype which consists of limits-to-growth archetype of scientific planning balance,and limits-to-growth archetype of infrastructure input balance,and limits-to-growth archetype of high-quality staff balance.Through the join of limits-to-growth sub-archetypes,limits-to-growth archetype of rural tourism development in overseas countries were obtained,on the basis of which further researches were carried out to analyze management countermeasures to eliminate limits to growth via rural tourism development.It was stressed that government should play the guiding role,unified planning,scientific management and policy support further enhanced;more efforts should be devoted to the infrastructure construction,and more financial support given by the government;more professional talents should be introduced in multiple ways,and training for present rural tourism staff enhanced.展开更多
Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a ...Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.展开更多
A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused ma...A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method.展开更多
I.SUPPLEMENTARY NOTE 1:THEORETICAL MATERIALS.The quantum speed limit(QSL)is essential for quantum computing and quantum communication,referring to the minimum time required for a quantum system to evolve from one stat...I.SUPPLEMENTARY NOTE 1:THEORETICAL MATERIALS.The quantum speed limit(QSL)is essential for quantum computing and quantum communication,referring to the minimum time required for a quantum system to evolve from one state to another.Two well-known forms of the QSL are the Mandelstam-Tamm(MT)relation TqsL≥πh/2△E[S1]and the Margolus-Levitin(ML)relation TqsL≥πh/2(E)[S2]where Tqst is denoted as the QSL time,h is the reduced Planck's constant,△E is the energy uncertainty(standard deviation)of the system,and(E)is the average energy of the system above its ground state.Both of relations provide a lower bound on the evolution time.展开更多
High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for ...High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for the failure mechanism that occurs in deep-buried tunnel roofs,taking into account the influence of geostress.The limit analysis theory was utilized for deriving analytical solutions about the geometry of the collapsing surface and the limit supporting pressure.The collapsing surface obtained by the analytical solution was validated by the findings of the physical model test,which shows a high level of agreement with the actual one.An extensive investigation was done to explore the effects of the lateral pressure coefficients,the tunnel buried depth,the geological conditions of the surrounding rock,the long-short axis ratio,and the size of the tunnel profile.The findings indicate that an increase in the lateral pressure coefficient from 0.5 to 1.5 results in a reduction in the height of the collapsing zone by 2.08 m and the width of the collapsing zone by 1.15 m,while simultaneously increases the limit supporting pressure by 18.9%.The proposed upper bound method accurately determines the limit supporting pressure and the geometry of the collapsing surface,which aligns well with the results acquired through numerical modelling and on-site monitoring in actual engineering applications.The proposed analytical method can serve as a reference for similar crown failure issues of deep-buried tunnels.展开更多
This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0....This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.展开更多
With the rapid increase in power density of electronic devices,thermal management has become urgent for the electronics industry.Controlling temperature in the back-end-of-line is crucial for maintaining the reliabili...With the rapid increase in power density of electronic devices,thermal management has become urgent for the electronics industry.Controlling temperature in the back-end-of-line is crucial for maintaining the reliability of integrated circuits,where many atomic-scale interfaces exist.The theoretical models of interface thermal conductance not only accurately predict the values but also help to analyze the underlying mechanism.This review picks up and introduces some representative theoretical models considering interfacial roughness,elastic and inelastic processes,and electron–phonon couplings,etc.Moreover,the limitations and problems of these models are also discussed.展开更多
Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,...Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,the ecophysiology of P.globosa has been investigated by numerous studies.However,the proteomic response of P.globosa to nitrogen depletion remains largely unknown.We compared four protein preparation methods of P.globosa for two-dimensional electrophoresis(2-DE)(Urea/Triton X-100 with trichloroacetic acid(TCA)/acetone precipitation;TCA/acetone precipitation;Radio Immuno Precipitation Assay(RIPA)with TCA/acetone precipitation;and Tris buffer).Results show that the combination of RIPA with TCA/acetone precipitation had a clear gel background and showed the best protein spot separation effect,based on which the proteomic response to nitrogen depletion was studied using 2-DE.In addition,we identified six differentially expressed proteins whose relative abundance increased or decreased more than 1.5-fold(P<0.05).Most proteins could not be identified,which might be attributed to the lack of genomic sequences of P.globosa.Under nitrogen limitation,replication protein-like,RNA ligase,and sn-glycerol-3-phosphate dehydrogenase were reduced,which may decrease the DNA replication level and ATP production in P.globosa cells.The increase of endonucleaseⅢand transcriptional regulator enzyme may affect the metabolic and antioxidant function of P.globosa cells and induce cell apoptosis.These findings provide a basis for further proteomic study of P.globosa and the optimization of protein preparation methods of marine microalgae.展开更多
Motivated by some recent works on the topic of the Brown-Resnick process, we study the functional limit theorem for normalized pointwise maxima of dependent chi-processes. It is proven that the properly normalized poi...Motivated by some recent works on the topic of the Brown-Resnick process, we study the functional limit theorem for normalized pointwise maxima of dependent chi-processes. It is proven that the properly normalized pointwise maxima of those processes are attracted by the Brown-Resnick process.展开更多
Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that ...Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.展开更多
Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and cou...Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.展开更多
基金supported by the National Key R&D Plan of China(Grant 2021YFB3600703)the National Natural Science Foundation(Grant 62204137)of China for Youth,the Open Research Fund Program of Beijing National Research Centre for Information Science and Technology(BR2023KF02009)+1 种基金the National Natural Science Foundation of china(U20A20168,61874065,and 51861145202)the Research Fund from Tsinghua University Initiative Scientific Research Program,the Center for Flexible Electronics Technology of Tsinghua University,and a grant from the Guoqiang Institute,Tsinghua University.
文摘Two-dimensional(2D)transition metal dichalcogenides(TMDs)allow for atomic-scale manipulation,challenging the conventional limitations of semiconductor materials.This capability may overcome the short-channel effect,sparking significant advancements in electronic devices that utilize 2D TMDs.Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance.This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor.It delves into the impacts of miniaturization,including the reduction of channel length,gate length,source/drain contact length,and dielectric thickness on transistor operation and performance.In addition,this review provides a detailed analysis of performance parameters such as source/drain contact resistance,subthreshold swing,hysteresis loop,carrier mobility,on/off ratio,and the development of p-type and single logic transistors.This review details the two logical expressions of the single 2D-TMD logic transistor,including current and voltage.It also emphasizes the role of 2D TMD-based transistors as memory devices,focusing on enhancing memory operation speed,endurance,data retention,and extinction ratio,as well as reducing energy consumption in memory devices functioning as artificial synapses.This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices.This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications.It underscores the anticipated challenges,opportunities,and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
基金supported by the National SKA Program of China (2022SKA0130100)the National Natural Science Foundation of China (Grant Nos. 12373053, 12321003, and 12041306)+4 种基金the Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. ZDBSLY-7014)the International Partnership Program of Chinese Academy of Sciences for Grand Challenges (Grant No. 114332KYSB20210018)the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-063)the CAS Organizational Scientific Research Platform for National Major Scientific and Technological Infrastructure: Cosmic Transients with FASTthe Natural Science Foundation of Jiangsu Province (Grant No. BK20221562)。
文摘A hypothetical photon mass m_(γ) can produce a frequency-dependent vacuum dispersion of light, which leads to an additional time delay between photons with different frequencies when they propagate through a fixed distance. The dispersion measure and redshift measurements of fast radio bursts(FRBs) have been widely used to constrain the rest mass of the photon. However, all current studies analyzed the effect of the frequency-dependent dispersion for massive photons in the standard ΛCDM cosmological context. In order to alleviate the circularity problem induced by the presumption of a specific cosmological model based on the fundamental postulate of the masslessness of photons, here we employ a new model-independent smoothing technique, artificial neural network(ANN), to reconstruct the Hubble parameter H(z) function from 34 cosmic-chronometer measurements.By combining observations of 32 well-localized FRBs and the H(z) function reconstructed by ANN, we obtain an upper limit of m_(γ) ≤ 3.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 2.0 × 10^(-15)eV/c^(2)(m_(γ) ≤ 6.5 × 10^(-51)kg, or equivalently m_(γ) ≤ 3.6 × 10^(-15)eV/c_(2)) at the 1σ(2σ) confidence level. This is the first cosmology-independent photon mass limit derived from extragalactic sources.
文摘Microscopic pore structure in continental shale oil reservoirs is characterized by small pore throats and complex micro-structures.The adsorption behavior of hydrocarbons on the pore walls exhibits unique physical and chemical properties.Therefore,studying the adsorption morphology of hydrocarbon components in nanometer-sized pores and clarifying the exploitation limits of shale oil at the microscopic level are of great practical significance for the efficient development of continental shale oil.In this study,molecular dynamics simulations were employed to investigate the adsorption characteristics of various single-component shale oils in inorganic quartz fissures,and the influence of pore size and shale oil hydrocarbon composition on the adsorption properties in the pores was analyzed.The results show that different molecules have different adsorption capacities in shale oil pores,with lighter hydrocarbon components(C6H14)exhibiting stronger adsorption abilities.For the same adsorbed molecule,the adsorption amount linearly increases with the increase in pore diameter,but larger pores contribute more to shale oil adsorption.In shale pores,the thickness of the adsorption layer formed by shale oil molecules ranges from 0.4 to 0.5 nm,which is similar to the width of alkane molecules.Shale oil in the adsorbed state that is difficult to be exploited is mainly concentrated in the first adsorption layer.Among them,the volume fraction of adsorbed shale oil in 6 nm shale pores is 40.8%,while the volume fraction of shale oil that is difficult to be exploited is 16.2%.
基金the National Natural Science Foundation of China(NSFC)under No.52308473the National KeyR&DProgram under No.2022YFB2603301the China Postdoctoral Science Foundation funded project(Certificate Number:2023M743895).
文摘Purpose–This study aimed to facilitate a rapid evaluation of track service status and vehicle ride comfort based on car body acceleration.Consequently,a low-cost,data-driven approach was proposed for analyzing speed-related acceleration limits in metro systems.Design/methodology/approach–A portable sensing terminal was developed to realize easy and efficient detection of car body acceleration.Further,field measurements were performed on a 51.95-km metro line.Data from 272 metro sections were tested as a case study,and a quantile regression method was proposed to fit the control limits of the car body acceleration at different speeds using the measured data.Findings–First,the frequency statistics of the measured data in the speed-acceleration dimension indicated that the car body acceleration was primarily concentrated within the constant speed stage,particularly at speeds of 15.4,18.3,and 20.9 m/s.Second,resampling was performed according to the probability density distribution of car body acceleration for different speed domains to achieve data balance.Finally,combined with the traditional linear relationship between speed and acceleration,the statistical relationships between the speed and car body acceleration under different quantiles were determined.We concluded the lateral/vertical quantiles of 0.8989/0.9895,0.9942/0.997,and 0.9998/0.993 as being excellent,good,and qualified control limits,respectively,for the lateral and vertical acceleration of the car body.In addition,regression lines for the speedrelated acceleration limits at other quantiles(0.5,0.75,2s,and 3s)were obtained.Originality/value–The proposed method is expected to serve as a reference for further studies on speedrelated acceleration limits in rail transit systems.
文摘Because of the various elements that come into play in natural soil formation, the impact of varied proportions of mineral composition and fines amount on Atterberg limits and compaction characteristics of soils is not well known. Three distinct soil samples were used in this investigation. The findings indicated the effect of varied mineral composition proportions and fines amount on the liquid limit, plastic limit, and plasticity index as assessed by the Casagrande test and hand-rolling method. The fluctuation of maximum dry density and optimal moisture content with these three soils has also been studied. Furthermore, correlations were established to indicate the compaction parameters and the amount of minerals and particles in the soil. The data show that the mineral content of the soil has a direct impact on the Atterberg limits and compaction characteristics. Soils containing larger percentages of expansive minerals, such as montmorillonite, have more flexibility and volume change capability. Mineral composition influences compaction parameters such as maximum dry density, ideal water content, axial strain, and axial stress. Soils with a larger proportion of fines, such as Soil 2 and Soil 3, have stronger flexibility and lower compaction qualities, with higher ideal water content and lower maximum dry density. Soil 1 has moderate flexibility and intermediate compaction qualities due to its low fines percentage. The effect of different mineral compositions and fines on the Atterberg limits and compaction characteristics of soils can be used to predict the behavior of compacted soils encountered in engineering practices, reducing the time and effort required to assess soil suitability for engineering use.
基金supported jointly by the Natural Science Foundation of China (No.41807041)the Ninth Batch of Key Disciplines in Henan Province—Mechanical Design,Manufacturing and Automation (JG[2018]No.119).
文摘To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the photosynthetic characteristics and grain yield of winter wheat.Four irrigation lower limits were set for initiating irrigation(i.e.,light drought(LD,50%,55%,60%and 50%of field holding capacity(FC)at the seedling-regreening,jointing,heading and filling-ripening stages,respectively),medium drought(MD,40%,50%,55%and 45%of FC at the same stages,respectively),adequate moisture(CK1,60%,65%,70%and 60%of FC at the same stages,respectively),heavy drought(CK2,35%,40%,45%and 40%of FC at the same stages,respectively))and five irrigation quota per event(30,60,90,120 and 180 mm)were set for each lower limit.We found that the increase of drought stress is conducive to normal photosynthesis of winter wheat leaves which is supported by the following findings.First,photosynthetic rate(Pn)of LD60 treatment was higher than that of LD30,LD90,LD120,LD180,MD30,MD60,MD90,MD120 and MD180.Then,Under the 90 mm irrigation quota treatment,the yield of winter wheat basically increased with the increase of irrigation’s lower limit.Moreover,With the increase in irrigation quota,the yield of winter wheat increased,and the water use efficiency(WUE)of winter wheat increased at first and then decreased.In addition,compared with the LD30,MD30,MD60,MD90,MD120,and MD180,the yield of winter wheat in LD60 treatment increased by about 3.23%(3-year average),32.3%,19.9%,11.7%,10.1%,and 14.6%.At the same time,the WUE with LD60 treatment of winter wheat was significantly higher than LD90,LD120,LD180,MD30,MD60,MD90,MD120,MD180 treatments.There was a positive correlation between soil volumetric water content and Pn and between yield and Pn.The key period for yield formation in winter wheat is 180 days after sowing.In conclusion,to achieve the dual goals of stable winter wheat yield and efficient utilization of water resources in this region,the suitable threshold for initiating deficit irrigation of winter wheat is the LD60 treatment.This conclusion provides data support for water-saving and stable yield of winter wheat in this area.
基金supported by the Fund of China Academy of Railway Sciences Corporation Limited (Grant Nos.2022YJ177 and 2022YJ088).
文摘Purpose-It is quite universal for high-speed turnouts to be exposed to the wear of the stock rail of the switch rail during the service process.The wear will cause the change of railhead profile and the relative positions of the switch rail and the stock rail,which will directly affect the wheel-rail contact state and wheel load transition when a train passes the turnout and will further impose serious impacts on the safety and stability of train operation.The purpose of this paper is to provide suggestions for wear management of high-speed turnout.Design/methodology/approach-The actual wear characteristics of switch rails of high-speed turnouts in different guiding directions were studied based on the monitoring results on site;the authorized wear limits for the switch rails of high-speed turnout were studied through derailment risk analysis and switch rail strength analysis.Findings-The results show that:the major factor for the service life of a curved switch rail is the lateral wear.The wear characteristics of the curved switch rail of a facing turnout are significantly different from those of a trailing turnout.To be specific,the lateral wear of the curved switch rail mainly occurs in the narrower section at its front end for a trailing turnout,but in the wider section at its rear end when for a facing turnout.The maximum lateral wear of a dismounted switch rail from a trailing turnout is found on the 15-mm wide section and is 3.9 mm,which does not reach the specified limit of 6 mm.For comparison,the lateral wear of a dismounted switch rail from a facing turnout is found from the 35-mm wide section to the full-width section and is greater than 7.5 mm,which exceeds the specified limit.Based on this,in addition to meeting the requirements of maintenance rules,the allowed wear of switch rails of high-speed turnout shall be so that the dangerous area with a tangent angle of wheel profile smaller than 43.68 will not contact the switch rail when the wheel is lifted by 2 mm.Accordingly,the lateral wear limit at the 5-mm wide section of the curved switch rail shall be reduced from 6 mm(as specified)to 3.5 mm.Originality/value-The work in this paper is of reference significance to the research on the development law of rail wear in high-speed turnout area and the formulation of relevant standards.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金supported by the Natural Science Foundation of China(52122811).
文摘Displacement control algorithms commonly used to evaluate axial force-bending moment(PM)diagrams may lead to incorrect interpretations of the strength envelopes for asymmetric sections.This paper aims to offer valuable insights by comparing existing displacement control algorithms with a newly proposed force control algorithm.The main focus is on the PM diagrams of three example sections that exhibit varying degrees of asymmetry.The comparative study indicates that conventional displacement control algorithms inevitably introduce non-zero out-of-plane bending moments.The reported PM diagram in such cases erroneously neglects the out-of-plane moment and fails to represent the strength envelope accurately.This oversight results in significant and unconservative errors when verifying the strength of asymmetric sections.
基金Supported by Scientific and Technological Program of Jiangxi Provincial Department of Education: Limits to Growth Archetype Analysis ofRural Tourism with Restricted Resources and Countermeasure Research(GJJ1622)~~
文摘Based on archetype analysis of system dynamics,the limits-to-growth archetype of Peter Senge(one of his eight archetypes) was borrowed,and various influence factors of rural tourism development combined to construct the limits-to-growth archetype which consists of limits-to-growth archetype of scientific planning balance,and limits-to-growth archetype of infrastructure input balance,and limits-to-growth archetype of high-quality staff balance.Through the join of limits-to-growth sub-archetypes,limits-to-growth archetype of rural tourism development in overseas countries were obtained,on the basis of which further researches were carried out to analyze management countermeasures to eliminate limits to growth via rural tourism development.It was stressed that government should play the guiding role,unified planning,scientific management and policy support further enhanced;more efforts should be devoted to the infrastructure construction,and more financial support given by the government;more professional talents should be introduced in multiple ways,and training for present rural tourism staff enhanced.
基金This research was founded by the Funds for Creative Research Groups of National Natural Science Foundation of China(Grant No.51921006)the National Natural Science Foundations of China(Grant No.51978224)+2 种基金the National Major Scientific Research Instrument Development Program of China(Grant No.51827811)the National Natural Science Foundation of China,(Grant No.52008141)the Shenzhen Technology Innovation Program(Grant Nos.JCYJ20170811160003571,JCYJ20180508152238111 and JCYJ20200109112803851).
文摘Collisions between a moving mass and an anti-collision device increase structural responses and threaten structural safety.An active mass damper(AMD)with stroke limitations is often used to avoid collisions.However,a strokelimited AMD control system with a fixed limited area shortens the available AMD stroke and leads to significant control power.To solve this problem,the design approach with variable gain and limited area(VGLA)is proposed in this study.First,the boundary of variable-limited areas is calculated based on the real-time status of the moving mass.The variable gain(VG)expression at the variable limited area is deduced by considering the saturation of AMD stroke.Then,numerical simulations of a stroke-limited AMD control system with VGLA are conducted on a high-rise building structure.These numerical simulations show that the proposed approach has superior strokelimitation performance compared with a stroke-limited AMD control system with a fixed limited area.Finally,the proposed approach is validated through experiments on a four-story steel frame.
基金National Natural Science Foundation of China under Grant Nos.52378335 and 52322808.
文摘A seismic-induced landslide is a common geological catastrophe that occurs in nature.The Wangjiayan landslide,which was triggered by the Wenchuan earthquake,is a typical case in point.The Wanjiayan landslide caused many casualties and resulted in enormous property loss.This study constructs a simple surficial failure model based on the upper bound approach of three-dimensional(3D)limit analysis to evaluate the slope stability of the Wangjiayan case,while a traditional two-dimensional(2D)analysis is also conducted as a reference for comparison with the results of the 3D analysis.A quasi-static calculation is used to study the effect of the earthquake in terms of horizontal ground acceleration,while a parametric study is conducted to evaluate the critical cohesion of slopes.Rather than employing a 3D analysis,using the 2D analysis yields an underestimation regarding the safety factor.In the Wangjiayan landslide,the difference in the factors of safety between the 3D and 2D analyses can reach 20%.The sliding surface morphology as determined by the 3D method is similar to actual morphology,and the parameters of both are also compared to analyze the reliability of the proposed 3D method.
基金supported by the National Natural Science Foundation of China(Grant Nos.92165206 and 11974330)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301603)the Fundamental Research Funds for the Central Universities。
文摘I.SUPPLEMENTARY NOTE 1:THEORETICAL MATERIALS.The quantum speed limit(QSL)is essential for quantum computing and quantum communication,referring to the minimum time required for a quantum system to evolve from one state to another.Two well-known forms of the QSL are the Mandelstam-Tamm(MT)relation TqsL≥πh/2△E[S1]and the Margolus-Levitin(ML)relation TqsL≥πh/2(E)[S2]where Tqst is denoted as the QSL time,h is the reduced Planck's constant,△E is the energy uncertainty(standard deviation)of the system,and(E)is the average energy of the system above its ground state.Both of relations provide a lower bound on the evolution time.
基金supported partially by the National Natural Science Foundation of China(42277158,41972277,and U1934212)。
文摘High geostress,a typical attribute of tunnels located at significant depths,is crucial in causing stress-induced failure and influencing the stability of the tunnel crown.This study developed an analytical method for the failure mechanism that occurs in deep-buried tunnel roofs,taking into account the influence of geostress.The limit analysis theory was utilized for deriving analytical solutions about the geometry of the collapsing surface and the limit supporting pressure.The collapsing surface obtained by the analytical solution was validated by the findings of the physical model test,which shows a high level of agreement with the actual one.An extensive investigation was done to explore the effects of the lateral pressure coefficients,the tunnel buried depth,the geological conditions of the surrounding rock,the long-short axis ratio,and the size of the tunnel profile.The findings indicate that an increase in the lateral pressure coefficient from 0.5 to 1.5 results in a reduction in the height of the collapsing zone by 2.08 m and the width of the collapsing zone by 1.15 m,while simultaneously increases the limit supporting pressure by 18.9%.The proposed upper bound method accurately determines the limit supporting pressure and the geometry of the collapsing surface,which aligns well with the results acquired through numerical modelling and on-site monitoring in actual engineering applications.The proposed analytical method can serve as a reference for similar crown failure issues of deep-buried tunnels.
基金supported by the Natural Science Foundation of Ningxia(2022AAC05044)the National Natural Science Foundation of China(12161069)。
文摘This paper deals with the problem of limit cycles for the whirling pendulum equation x=y,y=sin x(cosx-r)under piecewise smooth perturbations of polynomials of cos x,sin x and y of degree n with the switching line x=0.The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations,which the generating functions of the associated first order Melnikov functions satisfy.Furthermore,the exact bound of a special case is given using the Chebyshev system.At the end,some numerical simulations are given to illustrate the existence of limit cycles.
基金supported by the Department of Packaging and Testing Institution of Sanechips。
文摘With the rapid increase in power density of electronic devices,thermal management has become urgent for the electronics industry.Controlling temperature in the back-end-of-line is crucial for maintaining the reliability of integrated circuits,where many atomic-scale interfaces exist.The theoretical models of interface thermal conductance not only accurately predict the values but also help to analyze the underlying mechanism.This review picks up and introduces some representative theoretical models considering interfacial roughness,elastic and inelastic processes,and electron–phonon couplings,etc.Moreover,the limitations and problems of these models are also discussed.
基金the National Natural Science Foundation of China(Nos.42176142,41906111,41806127)the Marine Economic Development Project of Guangdong Province(No.2023B1111050011)+1 种基金the Basic and Applied Basic Research Project of Guangzhou(Nos.2023A04J1548,2023A04J1549)the Outstanding Innovative Talents Cultivation Funded Programs for Doctoral Students of Jinan University(No.2021CXB010)。
文摘Phaeocystis globosa is an important unicellular eukaryotic alga that can also form colonies.P.globosa can cause massive harmful algal blooms and plays an important role in the global carbon or sulfur cycling.Thus far,the ecophysiology of P.globosa has been investigated by numerous studies.However,the proteomic response of P.globosa to nitrogen depletion remains largely unknown.We compared four protein preparation methods of P.globosa for two-dimensional electrophoresis(2-DE)(Urea/Triton X-100 with trichloroacetic acid(TCA)/acetone precipitation;TCA/acetone precipitation;Radio Immuno Precipitation Assay(RIPA)with TCA/acetone precipitation;and Tris buffer).Results show that the combination of RIPA with TCA/acetone precipitation had a clear gel background and showed the best protein spot separation effect,based on which the proteomic response to nitrogen depletion was studied using 2-DE.In addition,we identified six differentially expressed proteins whose relative abundance increased or decreased more than 1.5-fold(P<0.05).Most proteins could not be identified,which might be attributed to the lack of genomic sequences of P.globosa.Under nitrogen limitation,replication protein-like,RNA ligase,and sn-glycerol-3-phosphate dehydrogenase were reduced,which may decrease the DNA replication level and ATP production in P.globosa cells.The increase of endonucleaseⅢand transcriptional regulator enzyme may affect the metabolic and antioxidant function of P.globosa cells and induce cell apoptosis.These findings provide a basis for further proteomic study of P.globosa and the optimization of protein preparation methods of marine microalgae.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY18A010020)the Innovation of Jiaxing City:A Program to Support the Talented Persons.
文摘Motivated by some recent works on the topic of the Brown-Resnick process, we study the functional limit theorem for normalized pointwise maxima of dependent chi-processes. It is proven that the properly normalized pointwise maxima of those processes are attracted by the Brown-Resnick process.
基金Project supported by the NSAF(Grant No.U1930201)the National Natural Science Foundation of China(Grant Nos.12274331,91836101,and 91836302)+1 种基金the National Key R&D Program of China(Grant No.2018YFA0306504)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
文摘Dynamical decoupling(DD)is normally ineffective when applied to DC measurement.In its straightforward implementation,DD nulls out DC signal as well while suppressing noise.This work proposes a phase relay method that is capable of continuously interrogating the DC signal over many DD cycles.We illustrate its efficacy when applied to the measurement of a weak DC magnetic field with an atomic spinor Bose-Einstein condensate.Sensitivities approaching standard quantum limit or Heisenberg limit are potentially realizable for a coherent spin state or a squeezed spin state of 10000 atoms,respectively,while ambient laboratory level noise is suppressed by DD.Our work offers a practical approach to mitigate the limitations of DD to DC measurement and would find other applications for resorting coherence in quantum sensing and quantum information processing research.
基金supported by the National Key Research and Development Program (2022YFF0609504)the National Natural Science Foundation of China (61974126,51902273,62005230,62001405)the Natural Science Foundation of Fujian Province of China (No.2021J06009)
文摘Perovskite solar cells(PsCs)have developed tremendously over the past decade.However,the key factors influencing the power conversion efficiency(PCE)of PSCs remain incompletely understood,due to the complexity and coupling of these structural and compositional parameters.In this research,we demon-strate an effective approach to optimize PSCs performance via machine learning(ML).To address chal-lenges posed by limited samples,we propose a feature mask(FM)method,which augments training samples through feature transformation rather than synthetic data.Using this approach,squeeze-and-excitation residual network(SEResNet)model achieves an accuracy with a root-mean-square-error(RMSE)of 0.833%and a Pearson's correlation coefficient(r)of 0.980.Furthermore,we employ the permu-tation importance(PI)algorithm to investigate key features for PCE.Subsequently,we predict PCE through high-throughput screenings,in which we study the relationship between PCE and chemical com-positions.After that,we conduct experiments to validate the consistency between predicted results by ML and experimental results.In this work,ML demonstrates the capability to predict device performance,extract key parameters from complex systems,and accelerate the transition from laboratory findings to commercialapplications.