期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Identification and robust limit-cycle-oscillation analysis of uncertain aeroelastic system 被引量:1
1
作者 DAI YuTing WU ZhiGang YANG Chao 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第7期1841-1848,共8页
Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity a... Model uncertainty directly affects the accuracy of robust flutter and limit-cycle-oscillation (LCO) analysis. Using a data-based method, the bounds of an uncertain block-oriented aeroelastic system with nonlinearity are obtained in the time domain. Then robust LCO analysis of the identified model set is performed. First, the proper orthonormal basis is constructed based on the on-line dynamic poles of the aeroelastic system. Accordingly, the identification problem of uncertain model is converted to a nonlinear optimization of the upper and lower bounds for uncertain parameters estimation. By replacing the identified memoryless nonlinear operators by its related sinusoidal-input describing function, the Linear Fractional Transformation (LFT) technique is applied to the modeling process. Finally, the structured singular value(μ) method is applied to robust LCO analysis. An example of a two-degree wing section is carded out to validate the framework above. Results indicate that the dynamic characteristics and model uncertainties of the aeroelastic system can be depicted by the identified uncertain model set. The robust LCO magnitude of pitch angle for the identified uncertain model is lower than that of the nominal model at the same velocity. This method can be applied to robust flutter and LCO prediction. 展开更多
关键词 aeroelasticity ROBUST IDENTIFICATION uncertainty structured singular value p limlt-cycle-oscillation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部